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Abstract

Within uncharacterized groups, DNA barcodes, short DNA sequences that are present in

a wide range of species, can be used to assign organisms into species. We propose an

automatic procedure that sorts the sequences into hypothetical species based on the

barcode gap, which can be observed whenever the divergence among organisms

belonging to the same species is smaller than divergence among organisms from

different species. We use a range of prior intraspecific divergence to infer from the data a

model-based one-sided confidence limit for intraspecific divergence. The method, called

Automatic Barcode Gap Discovery (ABGD), then detects the barcode gap as the first

significant gap beyond this limit and uses it to partition the data. Inference of the limit

and gap detection are then recursively applied to previously obtained groups to get finer

partitions until there is no further partitioning. Using six published data sets of

metazoans, we show that ABGD is computationally efficient and performs well for

standard prior maximum intraspecific divergences (a few per cent of divergence for the

five data sets), except for one data set where less than three sequences per species were

sampled. We further explore the theoretical limitations of ABGD through simulation of

explicit speciation and population genetics scenarios. Our results emphasize in particular

the sensitivity of the method to the presence of recent speciation events, via (unreal-

istically) high rates of speciation or large numbers of species. In conclusion, ABGD is

fast, simple method to split a sequence alignment data set into candidate species that

should be complemented with other evidence in an integrative taxonomic approach.
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Introduction

DNA barcodes, short DNA sequences that are present

in a wide range of species and primarily used for

taxonomic expertise, are now routinely used to iden-

tify, classify and analyse species diversity in many

groups (http://www.barcodeoflife.org/content/resources/

publications). The vast majority of barcoding studies,

since Hebert et al. (2003), aim at testing the barcoding

methodology, by first sequencing the Cytochrome Oxi-

dase I (COI) gene (or other genes like MatK and rbcl for

plants; CBOL Plant Working Group 2009) for a large
nce: Guillaume Achaz, Fax: +33 1 44 27 63 12;

ume.achaz@upmc.fr
number of individuals, and then by comparing the

results obtained with previous knowledge of species

boundaries (e.g. Armstrong & Ball 2005; Clare et al.

2006; Costa et al. 2007; Kerr et al. 2007; van Velzen

et al. 2007; Rach et al. 2008). From previous studies, we

know that DNA barcoding is efficient when intraspe-

cific diversity for the COI gene is lower than the inter-

specific diversity, i.e. when COI sequences sampled

within the same species are always more similar than

sequences sampled from different species. Accordingly,

DNA barcodes can be used as an identification tool,

shortcutting the difficulties of a morphologically based

identification (Stoeckle 2003; Blaxter 2004; Janzen et al.

2005), especially for environmental studies (Valentini
� 2011 Blackwell Publishing Ltd
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et al. 2009). In the presence of a reference data set with

previously characterized species, the species of an

organism can be automatically identified using its bar-

code sequence. The accuracy and power of several

methods of assignation were recently assessed through

simulations (Austerlitz et al. 2009).

DNA barcodes have also been put forward as an

interesting tool to discover new species (Smith et al.

2005; De Salle 2006). Several new taxa that could poten-

tially be new species were discovered. Specifically, sev-

eral species, originally described by morphological or

ecological characters, were including two or more

groups of individuals that harbour very divergent COI

sequences (Hebert et al. 2004; Campbell et al. 2008;

Ståhls & Savolainen 2008; Locke et al. 2010). It is impor-

tant to emphasize that when DNA barcoding suggests

the existence of new species, it is not definitive proof

and must be used along with other characters that

make the species delimitation more reliable (De Salle

2006; Wiemers & Fiedler 2007). Indeed, COI gene can

be affected by several biases and must be combined

with, at least, the analysis of other independent genes,

but also with morphological, geographical or ecological

data to clearly delimit species in what is called an inte-

grative framework (Dayrat 2005; Will et al. 2005; Ah-

rens et al. 2007; Miller 2007; Vogler & Monaghan 2007;

Wiens 2007; Bond & Stockman 2008; Giraud et al. 2008;

Dépraz et al. 2009; Damm et al. 2010; Goetze 2010;

O’Meara 2010; Padial et al. 2010; Ross et al. 2010; Yeates

et al. 2010).

DNA barcodes can also be used as an exploratory

tool for unexplored groups. In this case, results

obtained with DNA barcodes cannot be directly com-

pared with other independent data (such as described

species in existing literature). Instead, groups predicted

from barcodes will be used as a first set of species

hypotheses. The method we propose here is precisely

designed for this purpose. We named it ABGD, an acro-

nym for Automatic Barcode Gap Discovery.

A General Mixed Yule Coalescent (GMYC) model has

been proposed to delimit species from single locus

genetic data (Pons et al. 2006; Monaghan et al. 2009).

Although grounded in a solid phylogenetic framework,

this model heavily relies on the correctness of the Yule

speciation model. Furthermore, it requires the phyloge-

netic reconstruction of all sequences in the data set,

which is a very slow process for very large data sets

and the model fit itself can be computationally inten-

sive. Other methods based on Markov Chain Clustering

(e.g. Zinger et al. 2009) are also used to build groups

(named OTU, for Operational Taxonomic Units) but not

specifically designed to delimit species, although Molec-

ular Operational Taxonomic Units (MOTUs; Floyd et al.

2002) may overlap with the species, depending on the
� 2011 Blackwell Publishing Ltd
species definition. Numerous other methods also exist

to delimit species based on DNA data, but they gener-

ally rely on a prior definition (e.g. based on morpholog-

ical characters and geographical/ecological data; for

review see, Sites & Marshall 2003).

Finally, several others methods based on multi-locus

data sets have been proposed to delimit species without

a priori knowledge (Knowles 2009; O’Meara 2010; Ross

et al. 2010). However, sequencing multiple genes can be

a laborious task, especially in largely unknown groups

for which only few loci are generally characterized.

In the distribution of pairwise differences between all

sequences of a typical barcode data set, one can observe

a gap between intraspecific diversity and interspecific

diversity; this gap has been named ‘barcode gap’.

Although several attempts have been made to establish

a standard limit between intra- and inter-species diver-

gence [e.g. 3% of divergence (Smith et al. 2005) or the

10· rule (Hebert et al. 2004)], none can be generalized

to many groups of organisms (Fergusson 2002; Holland

et al. 2004; Bichain et al. 2007; Gómez et al. 2007; Meier

et al. 2008). Furthermore, as highlighted in several stud-

ies, intra- and interspecific distances frequently overlap,

and visually defining a threshold becomes difficult

(Meyer & Paulay 2005; Elias et al. 2007; Wiemers & Fie-

dler 2007; Smith et al. 2008). We propose here a method

to automatically find the distance where the barcode

gap is located, called Automatic Barcode Gap Discovery

(ABGD). This method proposes a standard definition of

the barcode gap and can be used even when the two

distributions overlap to partition the data set into candi-

date species.

The data set is partitioned into the maximum number

of groups (i.e. species) such that the distance between

two sequences taken from distinct groups will always

be larger than a given threshold distance (i.e. barcode

gap). In the graph terminology, the sequences are nodes

connected by edges if their distance is smaller than the

threshold and the groups are the connected components

of the graph. Naively applying this method requires (i)

the knowledge of the threshold and (ii) the assumption

that sequences belonging to the most closely related

species have a greater divergence than the largest intra-

specific divergence. Thus, the aim of the ABGD method

is to (i) statistically infer the barcode gap from the data

and to partition the data set accordingly, and (ii) recur-

sively apply this procedure to the newly obtained

groups of sequences, thereby allowing to work with

data sets with multiple thresholds throughout taxa.

In this article, we first provide a complete description

of the ABGD method. We then applied our method to

both real and simulation data. Real data are necessary

to accurately validate our method, but simulation data

allow us to test the theoretical limitations of the method
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in a controlled scenario. For this reason, we believe that

simulated data provide an interesting opportunity for

testing methods based on the barcode gap strategy. For

the sake of clarity and brevity, we leave for a future

study the systematic comparison of all methods of spe-

cies delineation based on genetics data and therefore

only discuss qualitatively the benefits and drawbacks of

ABGD.
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Fig. 1 Schematic illustration of Automatic Barcode Gap Dis-

covery (ABGD). (a) A hypothetical distribution of pairwise dif-

ferences. This distribution exhibits two modes. Low divergence

being presumable intraspecific divergence, whereas higher

divergence represents interspecific divergence. (b) The same

data can be represented as ranked ordered values. (c) Slope of

the ranked ordered values. There is a sudden increase in

slopes in the vicinity of the barcode gap. The ABGD method

automatically finds the first statistically significant peak in the

slopes.
Methods

Automatic Barcode Gap Discovery

Here, a data set is a set of n sequences, divided into an

unknown number ns of unknown species. The distribu-

tion of pairwise differences between the n sequences of

a data set typically shows a gap when the mode of the

distribution of intraspecific divergence is lower than the

mode(s) of interspecific divergence. The ABGD method

aims at (i) finding automatically the gap that divides

the distribution between the left most significant mode

and the other one(s); (ii) applying recursively this oper-

ation to get the finest partition of the data set into can-

didate species. Unlike other methods that split

distributions (e.g. k-means; MacQueen 1967), this

method does not rely on any specific properties of the

distribution (e.g. variances).

The outline of ABGD is the following: (i) It finds the

first barcode gap that occurs at a distance larger than

some value distlimit, a limit under which distances are

statistically more likely to be intraspecific. distlimit is a

simple function of the population mutation rate, esti-

mated from the data set. It is estimated on a prelimin-

ary partition of the data set with a threshold P given by

the user (P is the prior maximum divergence of intra-

specific diversity). (ii) Taking a threshold equal to the

barcode gap computed in step (i), it computes a

so-called primary partition, where groups are the first

candidate species. (iii) To account for mutation rate var-

iability across taxa and overlap of intra and interspecific

diversities, ABGD is only completed after recursive

application of these first two steps to each cluster of the

primary partition. This recursion splits the primary

partition into secondary partitions, and so on until no

further splittings occur.

Detecting gaps. Our method for detecting gaps is

depicted in Fig. 1 : (i) All pairwise distances (i.e. num-

ber of differences, potentially corrected for multiple

substitutions using distance models) are ranked by

increasing values (d1 £ d2 £ � � � £ dp, where p ¼
n(n ) 1)/2 is the number of pairwise distances in the

data set of n sequences); (ii) A local slope function is

computed for a given window size w as: sr,w ¼
(dr+w ) dr)/w with r 2 [1,p ) w]; (iii) The method

detects peaks of slope values (corresponding to gaps in

the initial distribution) and reports the distance per-

forming the local maximum as the exact value of the

gap.

Obviously, sr,w depends on w and there is no easy

choice for a single w value. Therefore, we computed

increasing values of w, that increase by one tenth of its

starting value (eg. 100, 110, 120, …) and considered that

when the reported gap is identical for three successive
� 2011 Blackwell Publishing Ltd
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w, it is stable and therefore pertinent. It is noteworthy

to mention that modifications of this arbitrary rule do

typically not change the results. We set the default

starting w to p/10, with 1 as a minimum and 1000 as a

maximum.

Gaps within a single species. Here, we consider the refer-

ence case of one single species to compute the threshold

value distlimit, under which distances are statistically

more likely to be intraspecific.

If we assume that a species is a single non-structured

population, the distribution of pairwise differences from

a sample of sequences can be retrieved using coalescent

models (Tajima 1983; Slatkin & Hudson 1991). It is well

documented that this distribution is sometimes multi-

modal (Slatkin & Hudson 1991). This is actually one

feature of the distribution that has been put forward to

estimate population growth (Rogers & Harpending

1992) or to build up a test of neutrality (Harpending

et al. 1993), although because of the large variance of

the gap widths, it is of limited use because it has strong

bias for estimators and low power for statistics (Ramos-

Onsins & Rozas 2002; Rosenberg & Hirsh 2003). Here,

we characterized the distribution of the distance corre-

sponding to the largest gap one could observe in a sin-

gle panmictic population.

To do so, we ran standard coalescent simulations

with a single species and, in each run, computed the

distance that corresponds to the largest gap reported by

the previously described method for detecting gaps.

From 104 simulations, we estimated the upper bound-

ary of a one-tail 95% confidence interval of this distance

(distlimit). In a given data set, if the distance correspond-

ing to a gap exceeds distlimit, we can exclude (with a

risk of 5%) that this gap is within intraspecific diver-

gence.

Standard coalescent simulations here take two param-

eters: n, the number of sequences in the sample and h
the population mutation rate. h is the individual muta-

tion rate l per generation multiplied by twice the effec-

tive population size (i.e. h ¼ 2Nel). Further, the

previously described gap detecting method requires a

window size w. Therefore, the simulation process

requires overall three parameters: n, h and w.

Simulations (not shown) demonstrate that distlimit is

independent of w and of n (as soon as n > 10). How-

ever, it increases with h and shows a perfect fit to a lin-

ear relationship distlimit ¼ ah where a ¼ 2.581 (data not

shown). As a consequence, the only mandatory value to

assign the significance of a gap is h.

From a single species to the whole data set. Although the

only required value to compute distlimit for a given data

set is h, it is unfortunately often unknown and has to be
� 2011 Blackwell Publishing Ltd
estimated from the data. In the case of a single, non-

structured species, we can use a well-known unbiased

estimator of h, noted ĥp, that is equal to the average pair-

wise differences (Tajima 1983). On the contrary, estima-

tion of h from a sample of sequences with an unknown

number of species is a very difficult problem. We chose

to use a prior limit to intraspecific diversity (P) to com-

pute an estimator of h in the general case. Based on this

prior limit, we computed ĥprior, which is the average

pairwise of all distances that are below P. Because this

estimator is an average, it is only moderately sensitive to

outliers ; therefore, even approximately good prior limit

leads to estimators that are similar to the estimator one

would get using the true limit.

Because of the large variance of our estimator (Tajima

1983), we assume that the true h could be as large as

twice the estimator and define distlimit ¼ 2aĥprior.

Then, to only capture ‘large’ gaps, the barcode gap is

chosen as the first local maximum slope (of ranked dis-

tances) occurring after distlimit and X times larger than

any gap in the prior intraspecific divergence.

Therefore, our method uses two user input values: P,

a prior limit to intraspecific diversity and X, a proxy for

the minimum gap width. P give approximate indica-

tions on the area where the barcod gap should be

detected and X relates to the sensitivity of the method

to gap width. By default, the method set X ¼ 1.5 and

assess the impact of P by reporting results from P ¼
0.001 to P ¼ 0.1 (see Results).

Building the partitions. Once a barcode gap is computed,

we partition the data set into groups of sequences, i.e.

candidate species. Groups are chosen so that the dis-

tance between sequences from different groups is

always larger than the gap distance, and for each

sequence of each group, there is at least one other

sequence in the group at a distance smaller than the

gap distance. This primary partition of the data set

assumes that a single gap can be defined for the entire

data set. However, it is very likely that the gap distance

differs for groups within the data set. Therefore, we

chose to re-apply the same partition method to each

group of the primary partition to build a secondary par-

tition, which itself could potentially be further divided.

The method is then applied recursively to the newly

formed groups until no more split is made. Importantly,

the same prior intraspecific divergence P is used, but

the starting window size w may be resized as the

groups get smaller and smaller.
Simulations

We generated artificial distributions of pairwise differ-

ences using simulations generating gene genealogies
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evolving inside phylogenetic trees. There are three main

steps in our simulation process : (i) generation of a spe-

cies tree, (ii) generation of a sequence tree within the

species tree and (iii) addition of mutations on the

sequence tree. All populations are assumed to currently

have size N and time is always expressed in N genera-

tions. When only one species is considered, our simula-

tion reduces to a standard coalescent with

superimposed mutations as described in Hudson

(1990).

Speciation tree. We implemented four different models

of speciation: a radiation model, a Moran model, a Yule

model and a critical model. They are all characterized

by a single parameter b. In the radiation model, a single

event of speciation occurred in the past and all species

radiated at the same time; the radiation event is expo-

nentially distributed with parameter b. In the Moran

model, the number of species we follow is ns and is

held constant through time by replenishing instanta-

neously every species becoming extinct (Hubbell 2001;

Durrett 2008). More specifically, each species, indepen-

dently of the others, gives rise at constant rate b/ns to a

new daughter species, and to keep the species number

constant, kills simultaneously a randomly chosen spe-

cies. The resulting species tree is a Kingman coalescent

tree (Kingman 1982) with rate 2b/ns. In other words,

tracing the history of a group of k species backwards in

time, its number can only decrease by 1, and it does so

at rate bk(k ) 1)/ns. Last, in both the Yule and the criti-

cal models, the species trees result from a branching

process, in which species become extinct at rate d and

speciate at rate b, independently. In particular, a group

of species counting k species is incremented by 1 (speci-

ation) at rate bk and decremented by 1 (extinction) at

rate dk. Several properties of genealogical trees gener-

ated by such processes can be found in Lambert (2008).

In the Yule model, d ¼ 0, so that species never become

extinct. In the critical model, d ¼ b, so the size of a

group of species remains constant in mean. The geneal-

ogy of a group of extant species can be described in

such a manner that all coalescence times are indepen-

dently and identically distributed (Rannala 1997; Lam-

bert 2009). In the Yule model, the probability density of

coalescence times is exponential with parameter b:

fcoal(t) ¼ be)bt. In the critical model, the probability den-

sity of coalescence times is a Cauchy distribution:

fcoal(t) ¼ b(1 + bt))2. This density function decreases

much more slowly than an exponential function (heavy

tail), and has infinite mean.

Sequence tree. Sequence trees were generated using the

Kingman coalescent. In an isolated population, the

Kingman coalescent describes the dynamics of lineages
of sequences as time goes backwards. The number of

lineages decreases by 1 each time a common ancestor to

two lineages is found; at each such time, called coales-

cence time, the pair which coalesces is chosen uni-

formly among all possible pairs; the waiting time

between k and k ) 1 lineages is an exponential random

variable with parameter k(k ) 1)/2. Equivalently, an

exponential ‘clock’ with rate 1 is attached to each possi-

ble pair of lineages, and when the first clock rings, the

concerned pair collapses into one lineage. The rule is

modified for our purpose by attaching a clock only to

those pairs of lineages lying in the same species, that is,

by merely forbidding coalescence of lineages lying in

different species. Importantly, two lineages starting

within the same species do not necessarily coalesce

before coalescence of their species with a sister species;

their coalescence within the mother species can even be

longer than the coalescence of one of them with a third

lineage originating from a sister species (incomplete

lineage sorting). An example of such algorithm is given

in Simonsen et al. (1995).

Mutations. Once the sequence tree is constructed, the

mutations are distributed assuming a Poisson molecular

clock, with rate h/2, where h ¼ 2Nl (all populations

have the same size, N; l is per capita, per generation

mutation probability).
Results

The ABGD web-interface as well as a command-line

program are available at: http://wwwabi.snv.jus-

sieu.fr/public/abgd/ (sources are also provided).
Performance on real data

We apply the ABGD method on six chosen barcode

data sets selected from previous analyses that cover

diverse groups of the metazoans (Table 1). The size n

of the data set varies from 334 to 2574 sequences (and

therefore from n(n ) 1)/2 ¼ 55 611 to 3 308 877 pair-

wise distances). Each data set is associated with a pub-

lished article to a barcode analysis (Hajibabaei et al.

2006; Pons et al. 2006; Kerr et al. 2007; Wiemers & Fie-

dler 2007; Elias-Gutierrez et al. 2008; Smith et al. 2008),

where groups defined from DNA sequences (usually

the COI gene) are compared with species hypotheses

based on independent data, with good congruency

overall. Conclusions are typically based on the overall

congruency between COI genetic variation and species

hypotheses as traditionally defined in the literature for

these taxa. However, these data sets differ in several

aspects. First, they correspond to different taxa among

the metazoans (i.e. insects, crustaceans and vertebrates).
� 2011 Blackwell Publishing Ltd



Table 1 Barcode data sets used in this study

Taxon

Number of

sequences

Number of

groups in

References Publication

Amphibian 339 39 Smith et al. (2008)

Bird 2574 643 Kerr et al. (2007)

Cladocera 335 58 Elias-Gutierrez et al.

(2008)

Agrodiaetus 334 114 Wiemers & Fiedler

(2007)

Rivacindela 386* 46 Pons et al. (2006)

Sphingidae 989 107 Hajibabaei et al.

(2006)

*All three loci were concatenated, trimmed to a 1621 bp

conserved block; 86 sequences with more than 300 missing

characters (i.e. gaps) were then removed to avoid biases in

distance estimations.
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Second, they include a variable number of replicates

within each species and a different number of species.

Finally, the efficiency of DNA barcodes based on the

COI gene has been debated in some cases (see Vences

et al. 2005).

Automatic Barcode Gap Discovery takes as input

either a sequence alignment or a pairwise distance

matrix. For our purposes, sequences were aligned and

then used to compute a matrix of pairwise distances

using the Kimura two parameters model (Kimura 1980).

The shape of the pairwise distance distribution greatly

varies between the different data sets, some having a

clearcut barcode gap, others not (Fig. 2).

As a first result, we would like to emphasize that

ABGD method is extremely efficient in computation

time. Starting from a distance matrix (that takes few

minutes of computation time to build), it takes only

two seconds to find the recursive partition (for a given

prior limit) in the largest data set on a laptop (Intel

2.8 GHz, MacOSX). This is much faster, by several

orders of magnitude, than any other method proposed

so far, especially methods that require the reconstruc-

tion of a phylogenetic tree.

One critical parameter of the ABGD method is the

prior maximum divergence of intraspecific diversity (P).

Intuitively, if this parameter is set too high, the whole

data set will be considered as a single species and on the

contrary if it set too low, only identical sequences will be

considered as part of the same species. On the six data

sets, we ran the ABGD method with a prior P that

ranges from 0.001 to 0.12 (Fig. 3). Results show that as

expected the number of groups ranges from 1 (generally

when P ¼ 0.1) to a large number of groups that corre-

spond to groups of identical sequences (generally when

P ¼ 0.001). Results also show that typically recursive
� 2011 Blackwell Publishing Ltd
partitions have more groups than primary ones (which

is expected because the former derive from the latter).

This illustrates the benefit of the recursive partitioning.

Most importantly, results show that, for four data sets,

the number of groups is very close (sometimes equal) to

the number of species defined by the authors in their

original study when P ¼ 0.01. Not only the number of

groups matches but also their composition (data not

shown). When their numbers differ, some closely related

species are merged into a single group or some species

with a large diversity are split into a few groups. For the

Rivacindella group, species were predicted using the

GMYC method (Pons et al. 2006) that predicts more

groups than ABGD. A biological discussion about the

number of distinct species in this data set deserves fur-

ther discussions that are beyond the scope of this article.

Finally, for the Agrodiaetus data set [the ‘restricted’ data

set from Wiemers & Fiedler (2007)], we were not able to

identify a barcode gap. This is a consequence of the

small number of sequences per species (332 sequences

for 114 species: �2.9 sequences per species). Simulations

show that ABGD works when there are more than 3–5

sequences per species (data not shown).

Interestingly, although recursive partitions are

expected to handle better heterogeneities in the data

set, primary partitions are typically stable on a wider

range of prior values and are usually close to the num-

ber of groups described by taxonomists. We therefore

decided to report both primary and recursive partitions

in the output of ABGD.
Theoretical limitations

We have investigated the theoretical limitation of the

ABGD method and more generally of the methods that

predict species based on the barcode gap. As one could

expect, the number ns of species in the sample has a

large impact on the results. In our simulations, we built

a species tree using one of the four models of specia-

tion, then randomly assign the sequences to the species

and reconstruct their genealogy using coalescent models

and finally add mutations on the sequence tree assum-

ing a neutral molecular clock. Then, we compute the

distribution of the pairwise differences among all

sequences and apply the ABGD method including

recursive partition of sequences into groups.

As we are interested here in observing the theoretical

limitation of the method, we used an excellent prior on

the limit between intra- and interspecific divergence (P).

This would mimic a situation where we already know

approximatively the diversity among the species.

Indeed, intraspecific divergence is bounded by the

Kingman coalescent model, in which the time to the

most recent common ancestor has a 95% probability of
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Fig. 2 Pairwise distance distribution of the six data sets. Distribution of the pairwise distances between sequences in five data sets.

Saturation of the divergence is corrected using a Kimura two parameters model (transition and transversion rates). We also report

using dashed lines the distance that is estimated using a prior of P ¼ 0.005 of divergence. This figure illustrates, on the one hand,

how variable can barcode data sets be and, on the other hand, that the distance corresponding to the primary partition differs from

the prior distance.
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being lower than approximatively 3.95 · N generations,

where N is the species population size. Therefore, for a

given mutation rate, there is a bounded number of

mutations between two sequences of the same species.

In our simulations, we used a (rescaled) mutation rate

of h ¼ 10 and chose to set P ¼ 50. The probability to

observe more than 50 mutations is approximatively 0.02

(for a sample size larger than 10–15).
We evaluated the performance of the method, by

reporting the number of species successfully delimited.

For a given run, it ranges from 0 (none) to ns (all). A

species is considered as successfully delimited when all

its members belongs to the same predicted group and

no other sequences were added to it. This criterion is

very conservative and therefore makes the interpreta-

tion of the results straightforward.
� 2011 Blackwell Publishing Ltd
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Two species. We first assess the performance of ABGD

with 50 sequences randomly assigned to two species. In

this particular case, three models of speciation (the Mo-

ran, the Yule and the radiation models) are equal; only

the critical model differs.

We ran the simulations using a variable speciation

rate b that ranges from 0.001 to 10. When b ¼ 1, the spe-

ciation and intraspecies coalescence events occur on the
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of 2 are reported as a function of the branching rate (b) in the species

50 and 104 replicates. When b is in the vicinity of 1, both the species

When b > 1, the speciation time is typically much longer than the to

ence among and within species are well sorted apart. For this case, t

ABGD method almost never delimits only one species out of two.
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same time scale. As b gets smaller, the speciation times

get longer (the speciation tempo is slower). Results

(Fig. 4) show that the lower the speciation rate, the bet-

ter the performance of the method. When b is very low

(b > 1), the most recent speciation event is much older

than the times to most recent common ancestor within

species. When b ¼ 1, the barcode gap vanishes: there

are no more differences between intraspecific diver-
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and the intra-population tree have similar rates of coalescence.

tal population coalescence time ; in this case, the genetic differ-

he Moran, the Yule and the Radiation Model are identical. The
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gence and interspecific divergence. Interestingly, in the

critical model, because the Cauchy distribution has a

heavier tail than an exponential, speciation events tends

to be older for the same b. This translates into a better

performance of the ABGD for the same b value in the

critical model than in the other models.

Importantly, we would like to mention that, in each

run, the sequences were assigned to one of the two spe-

cies randomly with equal probability. However, if the

sampling is forced to consist in 49 sequences in one

species and 1 in the other, results are identical (data not

shown). This shows that the method is insensitive to

the allocation of the sequences into species.

One of the most striking features of Fig. 4 is the

almost absence of cases where only one of the two spe-

cies is correctly assigned. Either 2/2 species or 0/2 are

correctly delimited. When the detected gap distance

corresponds to the true barcode gap, we expect 2/2 suc-

cessfully delimited species. If the use of the detected

gap distance were over-splitting one species, we would

observe 1/2 successfully delimited species. However,

because we filter out potential gaps that are within spe-

cies, cases of this sort do not exceed a few per cent of

the runs. Finally, when a single group is found (no

split), we observe no (0/2) successfully delimited spe-

cies. This last case systematically happens when b > 1,

where divergence among and within species cannot be

sorted apart.

Five species. We further tested the ABGD method using

50 sequences randomly assigned to 5 species. Results
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5 are reported as a function of the branching rate (b) in the species tr

and 104 replicates.
(Fig. 5) show that, although results under the four

models of speciation are quantitatively different, results

under the Moran, the Yule and the critical models share

qualitative similarities. The ABGD method under radia-

tion model shows however very different results. Under

a radiation model, we observe either all (5/5) or no (0/

5) species correctly delimited. Because there is a single

event of speciation, when the speciation event is old

enough, all species are found. For the Moran, Yule and

critical models, we observe all cases but the 4/5 ones

(that do not exceed a few per cent). Intermediate suc-

cess (i.e. 1/5, 2/5, 3/5) that corresponds to the merging

of different species into a single group are observed

only for intermediate values of b. Indeed, for intermedi-

ate b, some speciation events are younger than times to

most recent common ancestors within species while

others are older. As b fi 0, all speciation events are

older than those times and all species are found (5/5).

Impact of ns. To measure more precisely the impact of

ns, we ran simulations with a fixed species branching

rate (b ¼ 0.03) but a variable number of species. We

first studied the probability distribution of the number

of correctly delimited species, with 250 sequences ran-

domly assigned to 25 species (Fig. 6). Since the Moran,

the Yule and the critical show qualitative similar

results, we chose to report results for the Yule and the

radiation models only. For the radiation model, 21.9%

of the runs yield to 0/25 and 57.5% of them are 25/25.

What remains is mainly 24/25 (17.8%) and 23/25

(2.5%). Cases like 24/25 correspond to the scenario
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where one of the 25 species is over-split. Although this

probability is very low for each species, the chances that

one of many is oversplit becomes higher. The probabil-

ity distribution of species successfully delimited is very

different for the Yule model. Indeed, the number of suc-

cessfully delimited species truly ranges from 0/25 to

25/25. The mode of the distribution is approximatively

15/25, which can be compared with 3/5 of Fig. 5.

Intuitively, for a given speciation rate, when the

number of species increases, there is a higher chance

that at least one of the speciation events is younger

than common ancestors within species. This implies

that the chances of correctly delimiting ns/ns species

will decrease with the number of species. The same

argument holds for the chances of finding no species

(0/ns). To assess the exact influence of the number of

species on the chance of assigning correctly all species

(ns/ns) or none (0/ns), we ran simulations with an

increasing number of species (from 2 to 25) with a

total number of sequences of n ¼ 10 · ns. As expected,

results show that both curves (ns/ns and 0/ns)

decrease strongly as the number of species increases.

This suggests that in a large data set, the chances that

all species are genetically differentiated becomes smal-

ler and smaller as the number of species increases.

Therefore, the predicted number of species is likely to

be underestimated.
� 2011 Blackwell Publishing Ltd
Modelling the impact of ns. The ABGD method detects a

difference between the intraspecific divergence and the

interspecific divergence. To observe ns/ns correctly

delimited species, sequences belonging to the two most

closely related species should be separated by a number

K of mutations greater than the largest intraspecific dis-

tance. In the Yule, Moran and radiation models, simple

analytical expressions exist for the distribution of K. In

these three models, the most recent speciation event is

exponentially distributed; with rate r ¼ b(ns ) 1) for the

Yule and the Moran models and with rate r ¼ b for the

radiation model. Therefore, the number of mutations K

separating two sequences belonging to the most closely

related species has P(K ¼ k) ¼ �Poisson(k;ht)Exp(t;r)dt, a

geometric probability distribution with parameter h/

(r + h) (e.g. Tajima 1983). Therefore, we have:

PradiationðK > kÞ ¼ h
bþ h

� �k

ð1Þ

PMoran/YuleðK > kÞ ¼ h
bðns � 1Þ þ h

� �k

ð2Þ

If k is close enough to the maximum intraspecific

divergence (depending only on h), then P(K > k) can be

taken as an approximation of the probability of delimit-

ing correctly ns/ns species, and the preceding equations
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can be used to predict how well the method will per-

form for given b and h.

Empirically, using k ¼ 65 for h ¼ 10 gives a good fit

(Fig. 6), at least for the case of the Moran and Yule

models. Importantly, eqn (1) predicts that, under the

radiation model, the probability of delimiting all species

will not be affected by the number of species. However,

results show that this probability slightly decreases with

ns. This is mainly due to the fact that the probability of

oversplitting one species increases in this particular case

with ns. Indeed, the preceding equations ignore the

impact of oversplitting that would also make the ns/ns

correctly delimited species less likely (although it is

expected to be relatively rare in typical cases).
Discussion

We have introduced a new method, ABGD, to automat-

ically formulate species hypotheses. Our method is

meant to be used as a tool to detects a gap in the distri-

bution of pairwise differences. Given the promising

results and efficient run time, we suggest it to be used

instead of any visual barcode gap definition that is less

reliable because of its dependence on the bin size of the

distribution and on some arbitrary, and not reproduc-

ible, decision that has to be made. The only input

parameter that has to be set is the approximate maxi-

mum prior intraspecific distance, P. Importantly

enough, this value needs not be defined precisely as the

partitions are stable over a wide range of prior value

and as several values are tested. We have repeatedly

tried to avoid the use of this prior knowledge but were

not able to do so. We would like to mention that the

necessity of this prior knowledge could be dropped in

theory, if a reliable estimator of h could be computed

from genetic data with an unknown number of species.

Until this is possible, we suspect that it will be difficult

to avoid the oversplitting of species into several groups.

Automatic Barcode Gap Discovery proposes the

grouping of the input sequences into several hypotheti-

cal species by the sole use of pairwise differences (i.e. a

distance matrix). As any method based on pairwise dis-

tances, it does not rely on an underlying genealogical

tree. Although no ancestral states are inferred, this is

very likely to be a benefit instead of a drawback as the

method can a priori be used with nuclear sequences

that have experienced recombination. Indeed, the tree

representation is inadequate in the presence of recombi-

nation as ancestry is no longer represented by a binary

tree but instead by an acyclic oriented graph, named

the ‘ancestral recombination graph’ (Griffths & Marjo-

ram 1997), that is, in practice, very difficult to recon-

struct. Our method does not rely on tree shapes but on

divergence, which, in case of recombination, are aver-
ages of neighbouring sequences with different genealo-

gies. Furthermore, because we ignore the underlying

genealogy, this method does not rely on properties of

internal nodes of the species tree. Indeed, the method

works when speciations are radiations, bifurcating

events or even a mixture of both.

We have demonstrated that ABGD performs well on

several large barcode data sets with previously hypoth-

esized species. This however requires an appropriate

prior of maximal intraspecific divergence. For the data

set we have studied, this prior lies between 1% and 3%

of divergence. In a few cases, ABGD founds multiple

species hypotheses (e.g. one species split into two, or

several species merged into a single one), but most of

these cases were identified by the authors as problem-

atic cases, where the COI gene was not totally congru-

ent with the previously defined species boundaries,

generally corresponding to species complexes. We

would like to mention that although a 1–3% is poten-

tially a reasonable default value for metazoans, it may

well be inappropriate for other taxa such as bacterial or

viral species which can harbour larger genetic diversity

(and therefore larger estimated h). Furthermore, intra-

specific genetic diversity (and therefore h) could vary

from species to species. To minimize the number of

false positive (oversplit species), one should use an esti-

mate of h for the most divergent species. The use of the

recursion steps of partition should allow for further

split within groups of smaller diversity, and thus limit

the number of false negative (merged species). To

explore the impact of P on the partitions, results com-

puted on real data sets are by default reported for a

range of P 2 [0.001,0.1]. Typically, only few gaps have

the potential to be considered as barcod gaps and the

number of the partitions increases by discrete jumps as

P gets smaller (see Fig. 3, where this is particularly

striking for primary partitions).

However, when no barcode gap exists in a data set,

ABGD cannot propose a primary partition and therefore

is not suited for species delimitation. On the examples

we have been working so far (e.g. in the Agrodiaetus

example), this happens when the number of sequences

per species is too small (i.e. <3–5).

Using controlled scenarios, we were able to show that

both the speciation rate (b) and the number of species

(ns) within a data set are crucial parameters for the

method to work. More generally, any method that

detects a gap between intra- and interspecific variability

will be strongly impacted by both b and ns. The first

caveat is the relative age of the speciation events to

ancestry within populations. When the speciation

events are too recent relative to population anctestry,

there is no possibility of using genetic data to infer

them. In terms of the model, when the speciation rate
� 2011 Blackwell Publishing Ltd
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rises to values comparable to the speed of genetic drift,

there is no more genetic differentiation between species.

In our model, all times are expressed in N generations,

which is the relevant time scale for population studies.

Therefore, the larger the species, the older has to be the

speciation event to observe differences between intra

and interspecific diversity. This has to be interpreted as

a secondary consequence of the growth of genetic

diversity with the effective population size. We would

like to mention that in most biological situations, the

rate of speciation is very likely to be much smaller than

the population drift rate. This illustrates well the benefit

of the simulations that can be used to properly assess

the theoretical limitation of the method. The second

caveat comes from the number of species in the data

set: the larger the number of species, the smaller the

chance to find them all (to a lesser extent for the radia-

tion model). Indeed, as the number of species grows, it

becomes more likely that at least one speciation event is

very recent. This again suggests that the only use of

genetic data by itself may not be appropriate to delimit

species.

We would like to emphasize that our method is

excellent in terms of computation time. The GMYC

method (Pons et al. 2006; Monaghan et al. 2009) is

extremely slow and computation of a single partition

could take up to several months for data sets of mod-

erate size. However, as a next step, it would be very

interesting to compare all methods available so far that

automatically build partitions and test their benefits

and drawbacks using simulations. Indeed, we believe

simulations offer an interesting opportunity to test the

theoretical limitations of all those methods in con-

trolled scenarios.

Finally, one should always keep in mind that the par-

tition output by ABGD is not meant to be interpreted as

a final species delimitation. It is intended to be a first

species partition hypothesis on which further work

should be carried out. As emphasized in the Introduc-

tion, genetic analysis of a single locus is not robust

enough to propose reliable species hypotheses. At least

one other locus should be added as extra information.

More appropriately, we strongly believe that the genetic

strategy is an excellent shorthand to build a first species

partition hypothesis. However, as exemplified by the

model above, there will be cases where genetic data

will not be informative (e.g. very recent species) and

adding more loci will not systematically improve the

results. Therefore, we think that the addition of non-

genetic data, such as ecological or morphological ones,

is essential to propose robust species hypotheses (De

Queiroz 2007; Bond & Stockman 2008; Padial et al.

2010). Similarly, ABGD users have to rely on indepen-

dent data (previously defined species, other barcoding
� 2011 Blackwell Publishing Ltd
studies that identified a prior divergence value for the

same taxa or a closely related group, or any other avail-

able data for the studied species) to choose among the

different partitions proposed by the ABGD method;

ignore the unrealistic hypotheses and confront the plau-

sible alternative ones in an integrative framework.
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