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GRAPH CLUSTERING VIA A DISCRETE UNCOUPLING PROCESS∗

STIJN VAN DONGEN†

Abstract. A discrete uncoupling process for finite spaces is introduced, called the Markov Clus-
ter Process or the MCL process. The process is the engine for the graph clustering algorithm called
the MCL algorithm. The MCL process takes a stochastic matrix as input, and then alternates ex-
pansion and inflation, each step defining a stochastic matrix in terms of the previous one. Expansion
corresponds with taking the kth power of a stochastic matrix, where k ∈ N. Inflation corresponds
with a parametrized operator Γr, r ≥ 0, that maps the set of (column) stochastic matrices onto
itself. The image ΓrM is obtained by raising each entry in M to the rth power and rescaling each
column to have sum 1 again. In practice the process converges very fast towards a limit that is in-
variant under both matrix multiplication and inflation, with quadratic convergence around the limit
points. The heuristic behind the process is its expected behavior for (Markov) graphs possessing
cluster structure. The process is typically applied to the matrix of random walks on a given graph
G, and the connected components of (the graph associated with) the process limit generically allow
a clustering interpretation of G. The limit is in general extremely sparse and iterands are sparse in
a weighted sense, implying that the MCL algorithm is very fast and highly scalable. Several math-
ematical properties of the MCL process are established. Most notably, the process (and algorithm)
iterands posses structural properties generalizing the mapping from process limits onto clusterings.
The inflation operator Γr maps the class of matrices that are diagonally similar to a symmetric
matrix onto itself. The phrase diagonally positive semi-definite (dpsd) is used for matrices that are
diagonally similar to a positive semi-definite matrix. For r ∈ N and for M a stochastic dpsd matrix,
the image ΓrM is again dpsd. Determinantal inequalities satisfied by a dpsd matrix M imply a
natural ordering among the diagonal elements of M , generalizing the mapping of process limits onto
clusterings. The spectrum of Γ∞M is of the form {0n−k, 1k}, where k is the number of endclasses of
the ordering associated with M , and n is the dimension of M . This attests to the uncoupling effect
of the inflation operator.
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similarity, positive semi-definite matrices, circulant matrices
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1. Introduction. The subject of study is a parametrized algebraic process called
the Markov Cluster Process (MCL process), which is the engine of a cluster algorithm
for graphs, accordingly named the MCL algorithm. The algorithm is nothing more
than a shell in which parameters are set, the MCL process is computed, and the result
is interpreted. The process itself is defined on the space of stochastic matrices. Given
a graph G, the algorithm employs the process by applying it to the matrix of random
walks on G.

The MCL algorithm [11, 12] was first applied in the field of protein family de-
tection [18]. In this setting, proteins are nodes in a graph where the edge weights
are derived from BLAST (Basic Local Alignment Search Tool) scores between pro-
tein amino-acid sequences. Following [18], the algorithm has been widely applied in
bioinformatics, in a diversity of settings and applications.
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122 STIJN VAN DONGEN

A number of publications have used MCL for large scale single species or cross-
species protein and gene family analysis, e.g., [15, 16, 28, 38, 52, 60]. Other protein-
related MCL applications in bioinformatics are large scale sequence space analy-
sis [19, 37], hybrid MCL/single-link clustering [29], orthologous groups [41], kinase
proteins [24], secreted proteins [7], eye proteins [39], mobile genetic elements [40],
protein interaction networks [5, 54], and protein function determination [61]. Addi-
tionally, MCL has been applied in corpus linguistics [13, 14, 25], content-based image
retrieval [32], peer-to-peer network analysis [57], and social network analysis [46].

Factors aiding the adoption of the MCL algorithm include (a) It generates well-
balanced flat (nonhierarchic) clusterings. (b) It is intrinsically a bootstrapping method.
Seeding information cannot and need not be supplied, especially not the number of
clusters. (c) It has a natural parameter (inflation) affecting cluster granularity. (d) It
is amenable to sparse graph/matrix implementation techniques, implying good scala-
bility. (e) Mathematical results tie MCL process iterands, the cluster interpretation,
inflation, and the number of clusters together.

The focus of the present work is largely on (e), the mathematical results de-
scribing in a qualitative manner how the MCL process exposes cluster structure in
graphs. Issues of scaling and implementation are discussed, and in two examples
the MCL process and its clustering characteristics are visualized. Relationships with
other mathematical frameworks are established, and several conjectures are made.
Comparison with other clustering approaches fall outside the scope of this exposition.
The field of bioinformatics is very active in this respect, and the reader is referred to
the references given above.

The MCL process is simple to compute and lends itself to drastic scaling by a
regime of pruning, as the limits are in general extremely sparse and the iterands sparse
in a weighted sense. It is convenient to distinguish between the process and the algo-
rithm, in order to separate mathematical issues from such issues as implementation
and scaling (i.e., computing an approximated process in order to gain speed). Sec-
tion 6 contains a succinct discussion of how an MCL implementation can efficiently
compute a slightly perturbed MCL process.

The structure of the article is as follows. The clustering heuristic is briefly intro-
duced in the next section. The MCL process is fully described and the interpretation
of a process limit as a clustering of the input graph is given. This is sufficient to define
the MCL algorithm. A summary is given of some issues concerning convergence and
the interpretation of limits as clusterings. Several matrix excerpts from one partic-
ular process are shown in section 3, including its limit. In section 4 various lemmas
and theorems concerning MCL iterands are given. The process consists of alterna-
tion of two operators, expansion, and inflation. Both operators preserve the class of
stochastic matrices that are diagonally similar to a symmetric matrix. These matrices
are called diagonally symmetric. Several of their properties are listed. If a matrix is
diagonally similar to a positive semi-definite matrix, then it is called a diagonally pos-
itive semi-definite, abbreviated dpsd. Under certain weak conditions many iterands
are guaranteed to be dpsd. Section 5 introduces structure theory for dpsd matrices.
Such a matrix possesses structural properties inducing a canonical mapping from the
matrix onto a directed acyclic graph, generalizing the mapping from MCL limits onto
overlapping clusterings. The structure theory also yields a qualitative statement on
the working of the inflation operator in terms of the matrix spectrum. Implementa-
tion is discussed in section 6, and conclusions, further research, and related research
make up the last section.
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2. Preliminaries. The MCL process consists of alternation of matrix expansion
and matrix inflation, where expansion means taking the power of a matrix using
the usual matrix product, and inflation (denoted Γr) means taking the Hadamard
power with coefficient r of a stochastic matrix and subsequently scaling its columns
to have sum 1 again. The clustering heuristic associated with the process is that a
dense region in a graph corresponds with a node set S for which pairs of elements
in S have the property that there are relatively many higher length paths completely
contained in S itself. By matrix expansion the higher step transition probabilities are
obtained; by matrix inflation large probabilities are promoted, and small probabilities
are demoted. It is to be expected that probabilities that correspond with edges
connecting different dense regions will suffer the most from the process of alternating
expansion and inflation. Indeed, iteration of the two operators leads to a limit that
is meaningful considering the original heuristic.

The inflation operator Γr is defined for arbitrary nonnegative matrices, in a
columnwise manner. This implies that column stochastic matrices will be used rather
than row stochastic matrices, which is merely a matter of preference and convention.
There are no restrictions on the matrix dimensions to fit a square matrix, because this
allows Γr to act on both matrices and vectors. There is no restriction that the input
matrices be stochastic, since it is not strictly necessary, and the extended applicability
is sometimes useful. Following the terminology used in [8] and [27], a nonnegative
matrix is called column allowable if all its columns have at least one nonzero entry.
The next definition prepares for the definition of the MCL process.

Definition 2.1. Denote the operator which raises a square matrix A to the tth
power, by Expt. Thus, ExptA = At.

This definition is put in such general terms because the class of dpsd matrices
(to be introduced later) allows the introduction of fractional matrix powers in a well-
defined way.

Definition 2.2. Let r be a real positive number, and let M ∈ R≥0
m×n be

nonnegative column allowable. The image of M under the parametrized operator Γr

is defined by setting

(ΓrM)pq = (Mpq)
r /

m∑
i=1

(Miq)
r.

In the setting of the MCL process, positive values r have a sensible interpreta-
tion attached to them. Values of r between 0 and 1 increase the homogeneity of the
argument probability vector (matrix), whereas values of r between 1 and ∞ increase
the inhomogeneity. In both cases, the ordering of the probabilities is not disturbed.
Negative values of r invert the ordering, which is not of apparent use. With ⊗ de-
noting the Kronecker product, the identities Expr(A ⊗ B) = Expr(A) ⊗ Expr(B)
and Expr(Exps(A)) = Exprs(A) hold. Similarly, Γr(A ⊗ B) = Γr(A) ⊗ Γr(B)
and Γr(Γs(A)) = Γrs(A) are true.

Definition 2.3. Define Γ∞ by Γ∞M = limr→∞ ΓrM .
This definition is meaningful, and it is easy to derive the structure of Γ∞M .

Each column q of Γ∞M has k nonzero entries equal to 1/k, (k depending on q),
where k is the number of elements that equal maxp Mpq, and the positions of the
nonzero entries in Γ∞M [1, . . . , n|q] correspond with the positions of the maximal
entries in M [1, . . . , n|q]. Following [44], if x denotes a real vector of length n, then
x[1] ≥ x[2] ≥ · · · ≥ x[n] denote the entries of x in decreasing order.
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Definition 2.4. Let x, y be nonnegative vectors of dimension n. The vector y
is said to majorize x, denoted as x ≺ y, if

k∑
i=1

y[i] ≥
k∑

i=1

x[i] k = 1, . . . , n,(2.1)

n∑
i=1

y[i] =

n∑
i=1

x[i].(2.2)

Lemma 2.5. For a stochastic vector x and parameters r, s ∈ R>0, r < s, one has
that Γr(x) ≺ Γs(x).

The proof of this lemma is straightforward [11].
Definition 2.6. An MCL process with input matrix M , where M is a stochastic

matrix, is determined by M and two sequences e(i), r(i), where ei ∈ N, ei > 1 and ri ∈
R, ri ≥ 0. It is written that

(2.3) (M, e(i), r(i)).

Associated with an MCL process, (M, e(i), r(i)) is an infinite sequence of matrices M(i),
where M1 = M , M2i = Expei(M2i−1), and M2i+1 = Γri(M2i), i = 1, . . . ,∞.

It must be stressed that the MCL process has no stochastic interpretation. The
heuristic on which it is grounded uses stochastic terminology, but each MCL pro-
cess (M, e(i), r(i)) is (for varying M) really a rather complex dynamical system based
on the alternation of two operators, expansion and inflation. The fact that expansion
and inflation distribute over the Kronecker yields the following lemma.

Lemma 2.7. The MCL process distributes over the Kronecker product.
Note. In practice, clustering with the MCL algorithm is best done with all

expansion values ei set to two. The reasoning behind this is pragmatic, as inflation
can be used to control the mixing properties of the process, whereas expansion is
computationally costly. Applying (columnwise) pruning in order to scale the process
renders prolonged expansion virtually useless. Nevertheless it seems best to formulate
the MCL process in the general terms of Definition 2.6, as this supplies a natural
framework for questions and conjectures (section 7). The canonical mapping between
graphs with nonnegative weights and nonnegative matrices is given below. In order to
work with column stochastic matrices, an arbitrary choice is made to identify matrix
columns with lists of neighbors.

Definition 2.8. The associated graph of a square nonnegative matrix A of
dimension n is a graph on n nodes labeled {1, . . . , n}, where there is said to be an arc
going from q to p with weight Apq iff Apq > 0.

The following theorem is preparatory to the mapping from nonnegative idempo-
tent matrices to overlapping clusterings in Definition 2.11. Its proof is given in [11]
and can also be derived from the decomposition of nonnegative idempotent matrices
given in [2, p. 65]. It represents a very basic result on the structural properties of
nonnegative idempotent matrices. Theorem 5.4 will show a more general structure to
be present in MCL iterands, so that in the setting of the MCL process Theorem 2.9
becomes a limiting case of Theorem 5.4. It will be shown that for M stochastic dpsd
a finite power of the matrix Γ∞(M) is idempotent (section 5).

Theorem 2.9 (see Theorem 1 in [11, p. 18]). Let M be a nonnegative col-
umn allowable idempotent matrix of dimension n, and let G be its associated graph.
For s, t, nodes in G, write s → t if there is an arc in G from s to t. By definition,
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s → t ⇐⇒ Mts 
= 0. Let α, β, γ be nodes in G. The following implications hold:

(α → β) ∧ (β → γ) =⇒ α → γ,(2.4)

(α → α) ∧ (α → β) =⇒ β → α,(2.5)

α → β =⇒ β → β.(2.6)

The theorem basically states that the graph associated with the matrix consists
for one part of subgraphs that are complete, with all nodes having loops as well.
The other part consists of nodes without loops that, given a complete subgraph, are
connected either to all or to none of the nodes in that subgraph. It is convenient to
introduce the notions of attractor and attractor system. The second is a (maximal)
complete subgraph, and the first is a node in such a subgraph.

Definition 2.10. Let G be the associated graph of a nonnegative column allow-
able idempotent matrix M of dimension n, with nodes labeled 1, . . . , n. The node α is
called an attractor if Mαα 
= 0. If α is an attractor, then the set of nodes reachable
from α is called an attractor system.

By Theorem 2.9, each attractor system in G induces a weighted subgraph in G
that is complete. These subgraphs form the cores of the clustering associated with a
(nonnegative idempotent) matrix M as stated below. An attractor system is simply
extended with all the nodes that reach it.

Definition 2.11. Let M be a nonnegative column allowable idempotent matrix
of dimension n, and let G be its associated graph on the node set V = {1, . . . , n}. Let
Ei, i = 1, . . . , k be the different attractor systems of G. For v ∈ V write v → Ei if there
exists e ∈ Ei with v → e. The (possibly) overlapping clustering C = {C1, . . . , Ck},
associated with M , is defined by

(2.7) Ci = Ei ∪
{
v ∈ V | v → Ei

}
.

Theorem 2.9 implies that v → f for all f ∈ Ei.
The simplest example of a limit matrix inducing overlap is the matrix below,

giving rise to the clustering {1, 3}, {2, 3}:
⎛
⎝

1 0 1/2
0 1 1/2
0 0 0

⎞
⎠ .

Combining the previous simple results, it is possible to rewrite each nonnegative
column allowable idempotent matrix M as a form PTAP , where P is a permutation
matrix, and

A =

⎛
⎜⎝

B1 f11 f12 . . . f1l

. . .
.
.
.

.

.

.
.
.
.

.

.

.
Bk fk1 fk2 . . . fkl

0 . . . 0 0 0 . . . 0

⎞
⎟⎠ .

Each matrix Bi is square, has rank one with all columns identical, contains only
positive entries, and there are no other nonzero entries in the corresponding columns
of A. Each matrix Bi corresponds with an attractor system, and k is the number of
resulting clusters. Each fij is a column vector with the same number of (row) entries
as Bi. Either all entries in fij are zero or they are all nonzero, and for each j at
least one fij is nonzero. If the vector fij is nonzero, then it corresponds with a node
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(identified by j) that is in the cluster defined by the attractor system corresponding
with Bi. If fij is nonzero for more than one i, then those i determine clusters that
overlap in the node identified by j.

In practice, cluster overlap is very rare. The phenomenon is inherently unstable,
in the sense that applying the MCL process to a perturbation of a limit matrix that
induces overlap leads the process to converge to a limit no longer inducing overlap.
A node previously in overlap will then be associated with just one of the multiple
clusters it was associated with before [12]. All current evidence suggests that cluster
overlap implies the existence of a graph automorphism of the graph associated with
the input matrix, leaving the overlapping part invariant and mapping the overlapping
clusters onto each other. In the simple example above, the automorphism would send
(1, 2, 3) to (2, 1, 3).

The phenomenon of attractor systems of cardinality greater than one is also un-
stable in nature, but a small perturbation of a matrix limit having such a system
will not change the associated clustering (assuming that the parameter r of Γr is
bounded). The main reason for this is that if J is a stochastic matrix of rank one
and E is a perturbation matrix (with zero column sums) of sufficiently small norm,
then (restricting attention to a special case) Exp2(Γ2(J + E)) is of the form J ′ + E′,
with J ′ stochastic of rank one and the norm of E′ being of order square the norm of E.
Current evidence also suggests that attractor systems of cardinality greater than one
imply the existence of a set of automorphisms by which each of the attractors (of one
system) can be mapped to any of the other. An example is shown in Figure 3.2 for
the graph in Figure 3.1. In this case, the automorphism would leave all nodes in place
except for interchanging 9 and 11.

Assuming that ei equals two and ri is bounded eventually, it is true that the
MCL process converges quadratically in the neighborhood of matrices that (i) are
MCL-invariant, that is, invariant both under expansion (multiplication) and inflation,
and (ii) have in each column one entry equal to 1 and all other entries equal to 0.
This is straightforward (though tedious) to verify—proofs are given in [11]. The issue
is somewhat clouded by the fact that the process may also converge towards a limit
matrix that does not satisfy condition (ii). A small perturbation of such a matrix is
amplified by the inflation operator so that the sequence of iterands departs from it.

The MCL algorithm consists of three steps. First, given an arbitrary input
graph G, loops are added resulting in a graph informally denoted as G+Δ. Some re-
marks on the necessity of this step are made in the next section. How weights are cho-
sen for the loops to be added is the responsibility of the algorithm. Subsequently, an
MCL process is applied to the matrix of random walks associated with G+Δ. Third,
the limit thus computed is interpreted as a clustering according to Definition 2.11.
One can obtain a fast, robust, and well-scaling implementation of the MCL algorithm
at http://micans.org/mcl/, which allows a simple type of parametrization: The ex-
pansion values ei are all set to 2 and the inflation values ri can assume two values,
changing once from the first to the second value.

In general the limit of an MCL process is extremely sparse, as the inflation oper-
ator is a force driving towards sparse columns. MCL iterands tend to be sparse in a
weighted sense, and this supplies the means to scale the MCL algorithm drastically
by incorporating a regime of pruning into the MCL process (cf. section 6).

The natural way to use the MCL process for the purpose of clustering a graph is
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by applying it to the matrix which represents the standard concept of a random walk
on the graph, where loops have been added to the graph. This matrix is obtained as
the incidence matrix multiplied by the diagonal matrix of inverse column (row) sums,
so that the product is column (row) stochastic. If the graph is undirected, then the
resulting stochastic matrix is diagonally similar to a symmetric matrix.

3. Examples.

Example I. In Figure 3.2, four excerpts are given of an MCL process. These are
the input matrix M , the iterand M3 = Γ2M

2, the iterand M5 = Γ2(Γ2M
2·Γ2M

2), and
the stable limit denoted LM . The process consists entirely of alternation of Exp2 and
Γ2. The graph H associated with M is depicted in Figure 3.1. Every node in H has a
loop; these are all left out in the figure. Weights are omitted as well. Note that there
exists a diagonal matrix d such that Md is symmetric. This implies that d−1/2Md1/2

is symmetric and thus the spectrum of M is real. Interpreting LM according to Defi-
nition 2.11 yields the clustering {{1, 6, 7, 10}, {2, 3, 5}, {4, 8, 9, 11, 12}}. It is necessary
to add loops to the nodes before applying MCL in order to prevent a result reflecting
the bipartite characteristics of H. Without adding loops, the resulting MCL pro-
cess limit yields the clustering {{1, 5, 10}, {2, 6, 7}, {3, 4, 8, 9, 11, 12}}. This is in line
with the heuristic underlying the process: The probabilities that are initially boosted
correspond with 2-step paths in H.

1 2 3 4

5

6 7 8 9

10 11 12

1 2 3 4

5

6 7 8 9

10 11 12

Fig. 3.1. On the left a graph H, on the right the graph associated with the limit of an MCL pro-
cess applied to H, loops added to H. Dark circles signify attractors; nodes 9 and 11 form an attractor
system (refer to section 5). Compare with the matrix iterands and limit matrix in Figure 3.2 and
with Figure 3.3, and see the discussion in Example I.

Example II. Figure 3.3 depicts different iterands of an MCL process triggered
by a geometric graph. This graph was first used in [21] as a test case for graph
partitioning. It is shown in the upper left of the figure. Two nodes are connected if
their distance is at most

√
8 Euclidean units. The edge weights were taken inversely

proportional to the Manhattan distance, and loops were added to each node with a
weight equal to the largest weight found in the edges in which it participates. The
matrix of random walks on this graph was input to an MCL process in which the
sequence e(i) assumed the constant 2 everywhere, and the sequence r(i) assumed the
constant 1.3 everywhere.

The other graphs in Figure 3.3 represent a pictorial representation of four MCL
iterands (stochastic matrices) and the limit in the lower right. The degree of shading
of a bond between two nodes indicates the maximum value of the corresponding
transition probabilities taken over the two directions. The darker the bond, the larger
the maximum. The degree of shading of a node indicates the total sum of incoming
transition probabilities. Thus, a dark bond between a white node and a black node
indicates that the maximum transition probability is found in the direction of the
black node, and that the probability attached to the reverse arc is negligible. The
limit graph, depicted in the lower right, contains all necessary information needed for
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.200 0.250 −− −− −− 0.333 0.250 −− −− 0.250 −− −−
0.200 0.250 0.250 −− 0.200 −− −− −− −− −− −− −−
−− 0.250 0.250 0.200 0.200 −− −− −− −− −− −− −−
−− −− 0.250 0.200 −− −− −− 0.200 0.200 −− 0.200 −−
−− 0.250 0.250 −− 0.200 −− 0.250 0.200 −− −− −− −−

0.200 −− −− −− −− 0.333 −− −− −− 0.250 −− −−
0.200 −− −− −− 0.200 −− 0.250 −− −− 0.250 −− −−
−− −− −− 0.200 0.200 −− −− 0.200 0.200 −− 0.200 −−
−− −− −− 0.200 −− −− −− 0.200 0.200 −− 0.200 0.333

0.200 −− −− −− −− 0.333 0.250 −− −− 0.250 −− −−
−− −− −− 0.200 −− −− −− 0.200 0.200 −− 0.200 0.333
−− −− −− −− −− −− −− −− 0.200 −− 0.200 0.333

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.380 0.087 0.027 −− 0.077 0.295 0.201 −− −− 0.320 −− −−
0.047 0.347 0.210 0.017 0.150 0.019 0.066 0.011 −− 0.012 −− −−
0.014 0.210 0.347 0.055 0.150 −− 0.016 0.046 0.009 −− 0.009 −−
−− 0.027 0.087 0.302 0.062 −− −− 0.184 0.143 −− 0.143 0.083

0.058 0.210 0.210 0.055 0.406 −− 0.083 0.046 0.009 0.019 0.009 −−
0.142 0.017 −− −− −− 0.295 0.083 −− −− 0.184 −− −−
0.113 0.069 0.017 −− 0.062 0.097 0.333 0.011 −− 0.147 −− −−
−− 0.017 0.069 0.175 0.049 −− 0.016 0.287 0.143 −− 0.143 0.083
−− −− 0.017 0.175 0.012 −− −− 0.184 0.288 −− 0.288 0.278

0.246 0.017 −− −− 0.019 0.295 0.201 −− −− 0.320 −− −−
−− −− 0.017 0.175 0.012 −− −− 0.184 0.288 −− 0.288 0.278
−− −− −− 0.044 −− −− −− 0.046 0.120 −− 0.120 0.278

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Γ2M2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.448 0.080 0.023 0.000 0.068 0.426 0.359 0.000 0.000 0.432 0.000 −−
0.018 0.285 0.228 0.007 0.176 0.006 0.033 0.005 0.000 0.007 0.000 0.000
0.005 0.223 0.290 0.022 0.173 0.000 0.010 0.017 0.003 0.001 0.003 0.001
0.000 0.018 0.059 0.222 0.040 0.000 0.001 0.187 0.139 0.000 0.139 0.099
0.027 0.312 0.314 0.028 0.439 0.005 0.054 0.022 0.003 0.010 0.003 0.001
0.116 0.007 0.001 0.000 0.004 0.157 0.085 0.000 −− 0.131 −− −−
0.096 0.040 0.013 0.000 0.037 0.083 0.197 0.001 0.000 0.104 0.000 0.000
0.000 0.012 0.042 0.172 0.029 0.000 0.002 0.198 0.133 0.000 0.133 0.096
0.000 0.001 0.015 0.256 0.009 −− 0.000 0.266 0.326 0.000 0.326 0.346
0.290 0.021 0.002 0.000 0.017 0.323 0.260 0.000 0.000 0.316 0.000 −−
0.000 0.001 0.015 0.256 0.009 −− 0.000 0.266 0.326 0.000 0.326 0.346
−− 0.000 0.001 0.037 0.000 −− 0.000 0.039 0.069 −− 0.069 0.112

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Γ2(Γ2M2 · Γ2M2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 −− −− −− −− 1.000 1.000 −− −− 1.000 −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− 1.000 1.000 −− 1.000 −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.500 −− −− −− 0.500 0.500 −− 0.500 0.500
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.500 −− −− −− 0.500 0.500 −− 0.500 0.500
−− −− −− −− −− −− −− −− −− −− −− −−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Limit LM resulting from iterating (Γ2 ◦Exp2) with initial matrix M , which is the matrix of random
walks associated with the graph in Figure 3.1.

Entries marked “−−” are either zero because that is the exact value they assume (this is true for
the first two matrices) or because the computed value fell below the machine precision.

Fig. 3.2. Iteration of (Γ2 ◦ Exp2).
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Geometric input graph Inflation 1.3, MCL iterand 2

Inflation 1.3, MCL iterand 4 Inflation 1.3, MCL iterand 8

Inflation 1.3, MCL iterand 12 Inflation 1.3, MCL limit

Fig. 3.3. Visualization of successive stages of the MCL process applied to the upper left graph,
with ei = 2 and ri = 1.3 for every iteration i (cf. Definition 2.6). The meaning of the grey values
of bonds and nodes are explained in section 3. At most 24 neighbors are shown for each node.D
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130 STIJN VAN DONGEN

constructing the MCL-invariant limit matrix. Dark nodes in this graph are attractors.

The examples in Figures 3.3 and 3.2 indicate that the MCL process has remarkable
convergence properties, regarding the structural properties of its iterands. Consider-
ing this evidence, to some extent an analogy is suggested with the normal Markov
process.

Assuming that the associated graph of the input matrix M is strongly connected
and contains at least one loop, it follows by Perron–Frobenius theory that 1 is the
only eigenvalue of M of modulus 1 and that it is simple.

By considering the spectrum of the powers Mk it follows that the normal Markov
process converges towards a rank-one idempotent matrix, having spectrum {0n−1, 1}.
In the example shown in Figure 3.2 the process also converges towards an idempo-
tent limit. The multiplicity of its eigenvalue 1 is 3, however, equaling (of course)
the number of strongly connected components in the associated graph of the limit.
Section 4 will give some insight into the spectral phenomena that play a role in the
MCL process by focusing attention onto two classes of stochastic matrices.

4. Properties of the inflation operator and stochastic dpsd matrices. At
first sight the inflation operator seems hard to get a grasp on mathematically, though
its behavior for vectors is well understood. Lemma 2.5 states that for a stochastic
vector x and parameters r, s ∈ R>0, r < s, one has that Γr(x) ≺ Γs(x), where ≺
denotes the majorization relationship. This implies that the orbit Γrx, (r > 0) is
fairly well understood, since the limiting cases Γrx, r → ∞ and Γrx, r ↓ 0 are also
easily derived. However, majorization results for vectors do not carry over to matrices
in such a way that statements can be made about algebraic properties of two matrices
subject to a columnwise majorization relationship. In [44] this issue is discussed at
length.

To some extent it is possible to give a qualitative account of the behavior of the
inflation operator, using structural properties of the matrices in a particular class pre-
served by inflation. Several preparatory results are derived in the current section. In
the following section simple structure theory is developed, explaining the uncoupling
effect of the inflation operator in qualitative terms.

In general ΓrM can be described in terms of a Hadamard matrix power that
is postmultiplied with a diagonal matrix. For a restricted class of matrices there
is an even stronger connection with the Hadamard product. These are the class of
stochastic diagonally symmetric matrices and a subclass of the latter, the class of
stochastic diagonally positive semi-definite matrices.

The Hadamard (entrywise) product of two matrices A and B that have the same
dimensions is written A◦B and satisfies [A◦B]pq = ApqBpq. The entrywise Hadamard
power with exponent r of a matrix A is written A◦r and satisfies [A◦r]pq = Apq

r.

The concept of diagonal symmetrizability can easily be transferred to complex
matrices, and most of the results in this paper can be derived in that more general
setting. This is not needed in the MCL setting and hence the definitions and results
here are simply stated for real matrices.

Definition 4.1. A square matrix A is called diagonally symmetric if it is diag-
onally similar to a symmetric matrix, that is, if there exists a positive vector x such
that the product Diag(x)

−1
A Diag(x) is symmetric.

The following useful identity is easy to verify.

Lemma 4.2. For a matrix A as in Definition 4.1, the identity Diag(x)
−1

A Diag(x)

= [A ◦AT ]
◦1/2

holds.
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Definition 4.3. A square matrix is called diagonally positive semi-definite if
it is diagonally similar to a positive semi-definite matrix, then it is called diagonally
positive definite if it is diagonally similar to a positive definite matrix. The phrases
are respectively abbreviated as dpsd and dpd.

Remark. If M is diagonally symmetric stochastic, and y is such that M Diag(y)
is symmetric, then My = y; thus y represents the equilibrium distribution of M . In
the theory of Markov chains, a stochastic diagonally symmetric matrix is called time
reversible or said to satisfy the detailed balance condition (see, e.g., [43] and [59]). A
slightly more general definition and different terminology was chosen here. The main
reason is that the term “time reversible” is coupled tightly with the idea of studying
a stochastic chain via (powers of) its associated stochastic matrix, and is also used
for continuous-time Markov chains. The MCL process studied in this article does
not have a straightforward stochastic interpretation, and the relationship between an
input matrix and the subsequent iterands is much more complex. Moreover, it is
natural to introduce the concepts of a matrix being diagonally similar to a positive
(semi-) definite matrix; clinging to “time reversible” in this abstract setting would be
both contrived and unhelpful. The proposed phrases seem appropriate, since several
properties of symmetric and psd matrices remain valid in the more general setting of
diagonally symmetric and dpsd matrices. Lemma 4.4 lists the most important ones,
which are easy to verify. Probably all of these results are known.

In the following, submatrices of a matrix A are written A[u|v], where u denotes
a list of row indices, and v denotes a list of column indices.

Lemma 4.4. Let A be diagonally symmetric of dimension n, let α be a list
of distinct indices in the range 1, . . . , n, and let k and l be different indices in the
range 1, . . . , n. Let x be such that S = Diag(x)

−1
A Diag(x) is symmetric, and

thus A = Diag(x)S Diag(x)
−1

. Let λi be the eigenvalues of A (and S), and let ai be
the diagonal entries of A.

(a) A[α|α] = Diag(x)[α|α] S[α|α] Diag(x)[α|α]−1, in particular, the diagonal
entries of A equal the diagonal entries of S. This implies that the majorization
relationship between eigenvalues and diagonal entries for symmetric matrices
carry over to diagonally symmetric matrices: The spectrum of A majorizes
the vector of diagonal entries of A, translating to the inequalities below:

k∑
i=1

λ[i] ≥
k∑

i=1

a[i] k = 1, . . . , n.

Together with the first equality this implies that diagonally symmetric matrices
satisfy the same interlacing inequalities for bordered matrices as symmetric
matrices do.

(b) If A is dpsd and Akk = 0, then the kth row and the kth column of A are zero.
If A is dpsd and detA[kl|kl] = 0, then row k and row l are proportional, and
column k and column l are proportional.

(c) If A is dpsd, then, for each k ∈ N, there exists a unique dpsd matrix B
such that Bk = A. This matrix is defined by setting B = Diag(x)QΛ1/kQH

Diag(x)
−1

, where QΛQH is a unitary diagonalization of S, Λ is the diagonal
matrix of eigenvalues of S, and Λ1/k is the matrix Λ with each diagonal entry
replaced by its real nonnegative kth root. This implies that for dpsd A, the
fractional power At, t ∈ R≥0, can be defined in a meaningful way.
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132 STIJN VAN DONGEN

(d) If A, B are both of dimension n and diagonally symmetric, dpsd, dpd, then
the Hadamard product A ◦B is diagonally symmetric, dpsd, dpd.

Proof. Most statements are easy to verify. For extensive discussion of the ma-
jorization relationship between diagonal entries and eigenvalues of symmetric (or her-
mitian) matrices, as well as results on interlacing inequalities, see [3, 34, 35]. The
first statement in (b) follows from the fact that principal minors (of dimension 2) are
nonnegative. The second statement can easily be proven by first considering the case
where A is symmetric. The determinant detA[klm|klm] of an extended submatrix
equals zero and rewriting the constituent terms yields proportionality as stated in (b).
The result for dpsd matrices follows trivially. For (c) it is sufficient to use the fact
that QΛ1/kQH is the unique positive semi-definite kth root of S [34, p. 405]. State-

ment (d) follows from the identity (Diag(x)
−1

A Diag(x)) ◦ (Diag(y)
−1

B Diag(y)) =

Diag(x ◦ y)−1
(A ◦B)Diag(x ◦ y) and the fact that the analogous statements for sym-

metric matrices are true—known under the denomination of Schur product theorem
[34, p. 458].

Remark. The two most notable properties that do not generalize from symmetric
matrices to diagonally symmetric matrices are the absence of an orthogonal basis of
eigenvectors for the latter, and the fact that the sum of two diagonally symmetric
matrices is in general not diagonally symmetric as well.

Statements (a) and (b) in Lemma 4.4 are used in associating a directed acyclic
graph with each dpsd matrix in Theorem 5.4. First, the behavior of the inflation
operator on diagonally symmetric and dpsd matrices is described.

Theorem 4.5. Let M be a square column allowable diagonally symmetric matrix
of dimension n, and let Diag(x) be the diagonal matrix with a positive diagonal such

that the matrix S = Diag(x)
−1

M Diag(x) is symmetric, and let r be real. Define the
positive vector z by setting zk = xk

r(
∑

i Mik
r)1/2, and the positive rank-one symmet-

ric matrix T by setting Tkl = 1/(
∑

i Mik
r)1/2(

∑
i Mil

r)1/2. The following statement
holds:

Diag(z)
−1

( ΓrM) Diag(z) = S
◦r ◦ T.

Thus ΓrM is diagonally similar to a symmetric matrix.
Proof. Define the vector t by tk =

∑
i Mik

r. Then

ΓrM = M
◦r

Diag(t)
−1

= (Diag(x) S Diag(x)
−1

)
◦r

Diag(t)
−1

= Diag(x)
◦r

S
◦r

(Diag(x)
◦r

)−1 Diag(t)
−1

= Diag(t)
1/2

Diag(t)
−1/2

Diag(x)
◦r

S
◦r

(Diag(x)
◦r

)−1Diag(t)
−1/2

Diag(t)
−1/2

= (Diag(t)
1/2

Diag(x)
◦r

) (Diag(t)
−1/2

S
◦r

Diag(t)
−1/2

) (Diag(t)
1/2

Diag(x)
◦r

)−1.

Since the matrix Diag(t)
−1/2

S◦rDiag(t)
−1/2

equals S◦r ◦T , the lemma holds.
Corollary 4.6. Let M be square column allowable diagonally symmetric, and

let z, S, and T be as in Theorem 4.5.
(i) The matrix ΓrM is diagonally symmetric for all r ∈ R.
(ii) If M is dpsd, then ΓrM is dpsd for all r ∈ N. If M is dpd, then ΓrM is

dpd for all r ∈ N.
Proof. Statement (i) follows immediately from Theorem 4.5. Statement (ii) fol-

lows from the fact that a Hadamard product of matrices is positive (semi-) definite if
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each of the factors is positive (semi-) definite. Moreover, if at least one of the factors
is positive definite, and none of the other factors has a zero diagonal entry, then the
product is positive definite (see, e.g., [35, p. 309], or [23]). These are basic results in
the theory of Hadamard products, an area now covered by a vast body of literature.
Standard references in this area are [3, 35]. It should be noted that r ∈ N is in general
a necessary condition [35, p. 453].

Theorem 4.7. Let M be diagonally symmetric stochastic, and consider the
MCL process (M, e(i), r(i)).

(i) All iterands of this process have real spectrum.
(ii) If ri = 2 eventually, and ei = 2 eventually, then the iterands of the process

(M, e(i), r(i)) are dpsd eventually.
These statements1 follow from the fact that Exp2 maps diagonally symmetric

matrices onto dpsd matrices and from Corollary 4.6. �

Theorem 4.7 represents a qualitative result on the MCL process. Under fairly
basic assumptions the spectra of the iterands are real and nonnegative. In [11] it was
furthermore proven that the MCL process converges quadratically in the neighbor-
hood of nonnegative MCL-invariant matrices. These combined facts indicate that the
MCL process has a sound mathematical foundation. Still, much less can be said about
the connection between successive iterands than in the case of the discrete Markov
process.

The question now rises whether the MCL process can be further studied aiming
at quantitative results. It was seen that ΓrM , r ∈ N can be described in terms of a
Hadamard product of positive semi-definite matrices relating the symmetric matrices
associated with M and ΓrM (in Theorem 4.5). There are many results on the spectra
of such products. The results are generically in terms of a majorization relationship
such as

k∑
i=1

σi(A ◦B) ≤
k∑

i=1

fi(A)σi(B), k = 1, . . . , n.

Here σi() denotes the i-largest singular value, and fi(A) may stand (among others)
for the i-largest singular value of A, the i-largest diagonal entry of A, the i-largest
Euclidean column length, or the i-largest Euclidean row length. Well-known references
in this field are [3, 35]. Unfortunately such inequalities go the wrong way in a sense.
Since the inflation operator has apparently the ability to press several large eigenvalues
towards 1, what is needed are inequalities of the type

k∑
i=1

σi(A ◦B) ≥ (something nice here).

However, the number of eigenvalues pressed towards 1 by Γr can be any number
including zero (noting that one eigenvalue 1 is always present). Moreover, Γr also
has the ability to press small eigenvalues towards zero. Clearly, one cannot expect to
find inequalities of the “≥” type without assuming additional characteristics of M .
It is shown in the next section that the classic majorization relation formulated in

1Clearly the condition under (ii) can be weakened; it is only necessary that ei is at least one
time even for an index i = k such that ri ∈ N for i ≥ k. However, the assumptions under (ii) can be
viewed as a standard way of enforcing convergence in a setting genuinely differing from the discrete
Markov process.
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Lemma 4.4 (a) between the eigenvalues and diagonal entries of a dpsd matrix, plus a
classification of the diagonal entries of a dpsd matrix, gives useful information on the
relationship between eigenvalues of a stochastic dpsd matrix and its image under Γr.

5. Structure in dpsd matrices. The main objective for the remainder of this
paper is to establish structure theory for the class of dpsd matrices and study the
behavior of Γ∞ using these results. It will be shown that for stochastic dpsd M the
spectrum of the matrix Γ∞ is of the form {0n−k, 1k}, where k is related to a structural
property of M . Throughout this section two symbols are used that are associated with
a dpsd matrix A, namely the symbol � which denotes an arc relation defined on the
indices of A, and the symbol ∼ which denotes an equivalence relation on the indices
of A. It should be clear from the context which matrix they refer to. All results in
this section are stated in terms of columns; the analogous statements in terms of rows
hold as well.

Definition 5.1. Let A be dpsd of dimension n, and let k and l be different
indices in the range 1, . . . , n.

(i) Define the equivalence relation ∼ on the set of indices {1, . . . , n} by k ∼ l ≡
columns k and l of A are scalar multiples of each other via scalars on the
complex unit circle.

(ii) Define the arc relation � on the set of indices {1, . . . , n}, for p 
= q, by q �
p ≡ |Apq| ≥ |Aqq|.

(iii) Let E and F be different equivalence classes in {1, . . . , n}/ ∼. Extend the
definition of � by setting F � E ≡ ∃e ∈ E,∃f ∈ F [f � e]. By definition
of � and ∼, the latter implies that ∀e′ ∈ E,∀f ′ ∈ F [f ′ � e′].

Lemma 5.2. Let A be dpsd of dimension n, and let k and l be distinct indices in
the range 1, . . . , n. Then

l � k ∧ k � l implies k ∼ l.

This follows from Lemma 4.4 (b) and the fact that the assumption implies det
A[kl|kl] = 0. The following lemma prepares for a mapping of dpsd matrices onto
directed acyclic graphs.

Lemma 5.3. Let A be dpsd of dimension n, suppose there exist k distinct
indices pi, i = 1, . . . , k, k > 1, such that p1 � p2 � . . . � pk � p1. Then
p1 ∼ p2 ∼ . . . ∼ pk, and thus all pi, i = 1, . . . , k are contained in the same equivalence
class in {1, . . . , n}/ ∼. Furthermore, if A is real nonnegative, then the subcolumns
A[p1 . . . pk|pi] are a scalar multiple of the all-one vector of length k.

Proof. Without loss of generality, assume 1 � 2 � . . . � k � 1. The following
inequalities hold, where the left-hand side inequalities follow from the inequalities
implied by detA[i i+1] ≥ 0 and i � i + 1,

|Ai i+1| ≤ |Ai+1 i+1| ≤ |Ai+2 i+1|
|Ak−1 k| ≤ |Akk| ≤ |A1k|
|Ak1| ≤ |A11| ≤ |A21|.

Now let x be positive such that xqApq = xpAqp. On the one hand, |Akk| ≤ |A1k|. On
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the other hand,

|Akk| ≥ |Ak−1 k|

= xk−1

xk
|Ak k−1|

≥ xk−1

xk
|Ak−2 k−1|

= xk−1

xk

xk−2

xk−1
|Ak−1 k−2|

. . .

≥ xk−1

xk

xk−2

xk−1
. . . x1

x2
|Ak1|

= x1

xk
|Ak1|

= |A1k|.

This implies that |Ak−1 k| = |Akk| = |A1k| and the identities |Ai−1 i| = |Aii| = |Ai+1 i|
are established by abstracting from the index k. From this it follows that detA[i, i+
1|i, i + 1] = 0, and consequently i ∼ i + 1 for i = 1, . . . , k − 1 by Lemma 5.2. The
identities |Ai−1 i| = |Aii| = |Ai+1 i| also imply the last statement of the lemma.

Lemma 5.2 can now be generalized towards Theorem 5.4.
Theorem 5.4. Let A be dpsd of dimension n.

The arc � defines a directed acyclic graph (DAG) on {1, . . . , n}/ ∼.

Note that the theorem is stated in a columnwise manner. The analogous state-
ment for rows is of course also true. The proof of this theorem follows from Lemma 5.3.

Theorem 5.5. Let M be stochastic dpsd of dimension n. Let D be the directed
graph associated with Γ∞M defined on {1, . . . , n}/ ∼ according to Definition 5.1,
which is acyclic according to Theorem 5.4. Let d be the depth of D, that is, the length
of a longest path in D. Let k be the number of nodes in {1, . . . , n}/ ∼ which do not
have an outgoing arc in D. These nodes correspond with (groups of) indices p for
which Mpp is maximal in column p.

The spectrum of Γ∞M equals {0n−k, 1k}.
The matrix (Γ∞M)d is idempotent.

Proof. For the duration of this proof, write SA for the symmetric matrix to which
a diagonally symmetric matrix A is similar. For the first statement, consider the
identity

S(ΓrM) = [ΓrM ◦ (ΓrM)T ]
◦1/2

given in Lemma 4.2. The matrices ΓrM and SΓrM have the same spectrum. Now,
let r approach infinity. The identity is in the limit not meaningful, since Γ∞M is
not necessarily diagonalizable, and thus the left-hand side may not exist in the sense
that there is no symmetric matrix to which Γ∞M is similar. However, the identity

[spectrum of Γ∞M = spectrum of [Γ∞M ◦ (Γ∞M)T ]
◦1/2

] does remain true, since
the spectrum depends continuously on matrix entries [34, p. 540], and both limits
exist. Thus, it is sufficient to compute the spectrum of S∞, which is defined as

S∞ = [Γ∞M ◦ (Γ∞M)T ]
◦1/2

.
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Note that the nonzero entries of Γ∞M correspond with the entries of M which are
maximal in their column. Whenever [Γ∞M ]kl 
= 0 and [Γ∞M ]lk 
= 0, it is true
that k � l and l � k. Now consider a column q in S∞, and assume that all nonzero
entries in column q of S∞ are enumerated S∞piq 
= 0, for i = 1, . . . , t. It follows
that q � pi ∧ pi � q for all i, thus q ∼ pi for all i, and S∞[p1 . . . pt|p1 . . . pt] is a
positive submatrix equal to t−1Jt, where Jt denotes the all-one matrix of dimension
t. This implies that S∞ is block diagonal (after permutation), with each block cor-
responding with an equivalence class in {1, . . . , n}/ ∼ which has no outgoing arc in
the � arc relation. Each block contributes an eigenvalue 1 to the spectrum of S∞.
Since the spectrum of S∞ equals the spectrum of Γ∞M , and there are assumed to
be k equivalence classes with the stated properties, this proves the first statement.

A second approach proves both the first and the second statement. Consider Γ∞M
and the DAG D associated with it. Each index i for which [Γ∞M ]ii 
= 0 must be
in an endclass of D because Γ∞ annihilates all but the maximal elements in each
column. Moreover, the nonzero diagonal block (possibly 1-dimensional) associated
with such an index is idempotent. This implies that Γ∞M can be decomposed into
an idempotent part (consisting of the diagonal block) and a nilpotent part (the rest).
Some calculations now verify that (Γ∞M)d is idempotent, where d is the depth of
D.

Theorems 5.4 and 5.5 shed light on the structure and the spectral properties of
the iterands of the MCL process. Theorem 5.4 also gives the means to associate an
overlapping clustering with each dpsd iterand of an MCL process, simply by defining
the endnodes of the associated DAG as the unique cores of the clustering, and adding
to each set of attractors all nodes that reach it.

Consider a discrete Markov process with dpsd input matrix M . Then the dif-
ference Mk − M l, k < l, is again dpsd (they have the same symmetrizing diagonal
matrix, and the spectrum of Mk −M l is nonnegative). From this it follows that all
sequences of diagonal entries M (k)

ii, for fixed diagonal position ii, are nonincreasing.
In contrast, given a stochastic dpsd matrix M , the Γr operator, r > 1, (in the setting
of dpsd matrices) always increases some diagonal entries (at least one). The sum of
the increased diagonal entries, of which there are at least k if k is the number of
endnodes of the DAG associated with both M and ΓrM , is a lower bound for the
sum of the k largest eigenvalues of ΓrM (see Lemma 4.4 (a)).

The MCL process converges quadratically in the neighborhood of the MCL-
invariant stable states. Proving (near-) global convergence seems to be a difficult
task. I do believe, however, that a strong result will hold, where a provision has to be
made for a special class of matrices, here dubbed flip-flop matrices. A flip-flop ma-
trix M satisfies Γ2M = M1/2. There exists a family of positive semi-definite flip-flop
matrices of the form aIn + (1 − a)n−1Jn, n ∈ N [12]. The simplest example is found
in the case n = 3, where substituting a = 1/2 in the form yields a flip-flop matrix.
For such a matrix it is relatively easy to prove that a small perturbation lands it on a
trajectory away from the flip-flop state (with respect to alternation of Exp2 and Γ2)
[12]. It can be noted that flip-flop matrices and circulant matrices in general form
sets that are invariant under MCL iterations.

Conjecture 1. All MCL processes (M, e(i), r(i)), with ei = 2, ri = 2 eventually,
converge towards an MCL-invariant limit, provided M is irreducible, stochastic, dpsd,
and cannot be decomposed as a Kronecker product of matrices in which one of the
terms is a flip-flop matrix.

The requirement of irreducibility is present in order to exclude matrices that are
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a direct sum of smaller-dimensional matrices.

6. Implementation and scalability. A mature C implementation of the MCL
algorithm is available from http://micans.org/mcl/. This implementation is used in all
of the references cited in the introduction. It scales subquadratically given conditions
set forth below.

A fast implementation requires that the requirement of exact computation is
dropped. For any interesting class of real-life graphs scaling towards tens of thou-
sands of nodes and beyond, exact computation requires O(N2) memory resources
and O(N3) time steps, where N is the number of nodes in the input graph, reflecting
the basic costs of matrix multiplication. Even for sparse graphs, MCL iterands will fill
rapidly as interesting graphs tend to be well-connected and have only few connected
components.

The key observation is that in the presence of cluster structure, columns of MCL
iterands generally possess a very skewed (weight) distribution of entries. The majority
of the stochastic mass of any column is contained in a minority of the total set of
nonzero entries (of that column), as inflation keeps the leveling power of expansion
(multiplication) in check. In the MCL process limits, the matrix columns generally
are extremely skewed, with a single nonzero entry per column (equaling one). This
implies that MCL iterands never stray very far from the skewed weight distribution
just described, and it suggests a way to compute a perturbed process that is tractable.
That is to simply throw away some of the smallest entries, preferably adding to only
a small percentage of the column weight, and rescale the remaining entries to have
sum one again. This is the setup in the implementation described here.

The implementation uses a standard sparse matrix implementation where only
nonzero entries are stored in arrays representing stochastic matrix columns (known
as compressed column or column-major storage). During matrix multiplication, each
new column is computed separately. First, the new column is computed exactly and
nothing is disregarded. Then, the smallest entries are removed in a two-stage process
where first entries smaller than a fixed threshold are removed, and then entries are
recovered if the threshold turns out to be too severe, or more entries are removed
if the threshold turns out to be insufficiently severe. The selection and recovery of
entries is efficiently done using max and min heaps. The final assembly of entries is
rescaled to have sum one. The implementation tracks how much mass is kept for each
column during each iteration, and extensively reports on pruning characteristics.

This procedure has not yet been subjected to numerical analysis. The task ap-
pears to be nontrivial if a relationship with the effect on process limits is to be
established, due to the general difficulties in analyzing the (nonlinear) MCL process.
However, experiments on smaller graphs (with up to thousands of nodes) that allow
exact computation indicate that perturbing the process in this manner has very minor
impact on the resulting clusterings. The pruning reports in the setting of protein fam-
ily analysis indicate rather limited pruning of stochastic mass. Additionally, nodes
requiring severe pruning can be pruned in advance from the graph to allow for a more
precise computation. In this respect, data preprocessing may aid MCL the same way
it aids approaches to other large scale computational challenges.

Typically for large graphs of several hundreds of thousands of nodes, a maxi-
mum K of inbetween 1000−2000 entries per column is kept. Newly computed columns
may contain a number of nonzero entries L amounting to tens of thousands, and select-
ing the largest K entries from those L using threshold pruning and selection/recovery
with min/max heaps has time requirements of order O(L log(K)).
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7. Conclusions, further research, and related research. The MCL process
presented here appears to be both of practical and mathematical interest. A clear re-
lationship was established between dpsd matrices, a DAG (defined on indices column
or rowwise) that can be associated with every such matrix (Theorem 5.4), and the ef-
fect of the inflation operator on column stochastic dpsd matrices (Theorem 5.5). The
DAG defined on column indices of dpsd matrices generalizes the mapping of nonneg-
ative MCL-invariant matrices onto overlapping clusterings, and allows the association
of an overlapping clustering with each dpsd matrix. In the MCL process, the inflation
step effectively strengthens the associated DAG structure, the expansion step may
change it. Many interesting and difficult questions remain. A worthy long standing
goal is to prove or disprove Conjecture 1. Two more conjectures are made after the
following list of objectives.

(i) For a fixed MCL process (·, e(i), r(i)), what can be said about the basins of
attraction of the MCL process. Are they connected?

(ii) What can be said about the union of all basins of attraction for all limits
corresponding with the same overlapping clustering (i.e., differing only in the
distribution of attractors)?

(iii) Can the set of limits reachable from a fixed nonnegative matrix M for all
MCL processes (M, e(i), r(i)) be characterized? Can it be related to a struc-
tural property of M?

(iv) Given a node set I = {1, . . . , n} and two directed acyclic graphs D1 and D2

defined on I, under what conditions on D1 and D2 does there exist a dpsd
matrix M such that the DAGs associated with M according to Theorem 5.4,
via rows and columns, respectively, equals D1 and D2? What if M is also
required to be column stochastic?

(v) Under what conditions do the clusters in the cluster interpretation of the
limit of a convergent MCL process (M, e(i), r(i)) correspond with connected
subgraphs in the associated graph of M?

(vi) For M dpsd, in which ways can the DAG associated with M2 be related to
the DAG associated with M?

(vii) Is it possible to specify a subclass S of the stochastic dpsd matrices and
a subset R′ of the reals larger than N, such that ΓrM is in S if r ∈ R′

and M ∈ S?

Remark. The following is a relaxation of (iv): Given any DAG D is there a sym-
metric positive semi-definite matrix S such that D is the DAG associated with S (via
either columns or rows)? This is easily answered in the affirmative via a constructive
and inductive argument, working backwards from sinks to sources, at each step bor-
dering the previously obtained matrix with zeros and adding a suitably constructed
rank-one matrix.

Remark. There is no obvious nontrivial hypothesis regarding item (vi), unless
such a hypothesis takes quantitative properties of M into account. This is because the
breaking up of strongly connected components that can be witnessed in the MCL pro-
cess is always reversible—uncoupling can only happen in the limit. With respect to
(v), I conjecture the following.

Conjecture 2. Given a clustering C associated with a limit of an MCL process
with dpsd input matrix M , its clusters correspond with subsets of the node set of the
associated graph of M that induce connected subgraphs in M .

Next, consider an MCL process (M, e(i)
c
= 2, r(i)

c
= 2), with M dpsd, that

converges towards an MCL-invariant matrix L, and let G be the associated graph
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of M . The observations in section 2 suggest the following conjecture. Note that a
graph automorphism of G implies the existence of a permutation matrix P such that
M = PMPT .

Conjecture 3. Each attractor system in L implies that for any pair of ele-
ments (k, l) in the attractor system there is a graph automorphism of G mapping
k onto l.

Each instance of two overlapping clusters in L implies the existence of a nontrivial
graph automorphism of G, leaving the overlapping part of the two clusters invariant
and mapping the remaining part of one of them onto the remaining part of the other.

There are several lines of research that may inspire answers to the questions
posed here. However, for none of them the connection seems so strong that existing
theorems can immediately be applied. The main challenge is to further develop the
framework in which the interplay of Γr and Exps can be studied. Hadamard-Schur
theory was discussed in section 4. Perron-Frobenius theory, graph partitioning by
eigenvectors (e.g., [55] and [56]), and work regarding the second largest eigenvalue of
a graph (e.g., [1] and [9]), are a natural source of inspiration, and so is the theory
of Perron complementation and stochastic complementation as introduced by Meyer
([47] and [48]). There are also papers that address the topic of the structure of
matrices which have the subdominant eigenvalue close to the dominant eigenvalue ([30]
and [53]). It should be noted that in the former paper matrices are studied that do
not have nonnegative spectrum. In the setting of dpsd matrices, much stronger results
can be expected to hold regarding the relationship between uncoupling measures and
spectrum. The literature on the subject of diagonal similarity does not seem to
be of immediate further use, as it is often focused on scaling problems (e.g., [17]
and [33]). For the study of flip-flop equilibrium states the many results on circulant
matrices are likely to be valuable, for example the monograph [10], and the work on
group majorization in the setting of circulant matrices in [26]. It may also be fruitful
to investigate the relationship with Hilbert’s distance and the contraction ratio for
positive matrices, as studied in [4, 6, 8, 27, 58].

Acknowledgments. The author wishes to thank the anonymous referees for
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