r8s, version 1.70

User’s Manual
(December 2004)

Michael J. Sanderson

Section of Evolution and Ecology, One Shields Avenue,
University of California, Davis, CA 95616, USA
email:mjsanderson@ucdavis.edu

Table of Contents

Introduction
What’s new in version 1.7
What was new in version 1.5
Installation
Some definitions
Running the program
Data file format
Grammar for r8s block and r8s commands
Required information in the r8s block
Naming nodes/clades/taxa: the mrca command
Fixing and constraining times prior to estimating divergence times
Estimation of rates and times
Methods
LF method
LF “local molecular clock” method
NPRS methods
PL method
Algorithms
Powell
TN
Qnewt
Cross-validation
Estimating absolute rates alone
Checking the solution: the checkGradient command
Showing ages and rates: the showage command
Showing trees and tree descriptions: the describe command
The set command
Scaling tree ages: the calibrate command
Profiling across trees
Relative rates tests: the rr1ike command
Fossil-based model cross-validation
Substitution models and branch lengths
Recommendations for obtaining trees with branch lengths
Uniqueness of solutions
Bootstrap confidence intervals on parameters
Search strategies, optimization methods, and other algorithmic issues
General advice and troubleshooting
Bug reports (thanks, apologies, etc.)
“Extra commands and features”
Command reference
References
Mathematical appendix

O 00NN LNt AW

Introduction

This is a program for estimating absolute rates (“r8s”) of molecular evolution and
divergence times on a phylogenetic tree. It implements several methods for estimating
these parameters ranging from fairly standard maximum likelihood methods in the
context of global or local molecular clocks to more experimental semiparametric and
nonparametric methods that relax the stringency of the clock assumption using smoothing
methods. Its starting point is a given phylogenetic tree and a given set of estimated
branch lengths (numbers of substitutions along each branch). In addition one or more
calibration points can be added to permit scaling of rates and times to real units. These
calibrations can take one of two forms: assignment of a fixed age to a node, or
enforcement of a minimum or maximum age constraint on a node, which is generally a
better reflection of the information content of fossil evidence. Terminal nodes are
permitted to occur at any point in time, allowing investigation of rate variation in
phylogenies such as those obtained from “serial” samples of viral lineages through time.
Finally, it is possible to assign all divergence times (perhaps based on outside estimates
of divergence times) and examine molecular rate variation under several models of
smoothing.

The motivation behind the development of this program is two-fold. First, the abundance
of molecular sequence data has renewed interest in estimating divergence times (e.g.,
Wray et al. 1996; Ayala et al. 1998; Kumar and Hedges 1998; Korber et al. 2000), but
there is wide appreciation that such data typically show strong departures from a
molecular clock. This has prompted considerable theoretical work aimed at developing
methods for estimating rate and time in the absence of a clock (Hasegawa et al. 1989;
Takezaki et al. 1995; Rambaut and Bromham 1998; Sanderson 1997; Thorne et al. 1998;
Hulesenbeck et al. 2000; Kishino et al. 2001). However, software tools for this are still
specialized and generally do not permit the addition of flexible calibration tools.

Second, there are surprisingly few estimates of absolute rates of molecular evolution
constructed in a phylogenetic framework. Most estimates are based on pairwise distance
methods with simple fixed calibration points (e.g., Wray et al. 1996; Kumar and Hedges
1998). This program is designed to facilitate estimation of rates of molecular evolution,
particularly estimation of the variability in such rates across a tree.

Powerful tools are available for phylogenetic analysis of molecular data, such as the
magnificent PAUP* 4.0 (Swofford 1999), but none of them is designed from the ground
up to deal with time. The default molecular models are generally atemporal in the sense
that they estimate branch lengths that consist of non-decomposable products of rate and
time. PAUP* and PAML and other programs can, of course, enforce a molecular clock
and reconstruct a tree in which the branch lengths are proportional to time, but the time of
the root of such a tree is arbitrary. It can be scaled manually a posteriori by the user given
the age of single fossil attached to a single node in the tree, but none of these programs
permit the addition of several calibration points or minimum or maximum age
constraints. Moreover, they do not consider models that are intermediate between the
clock on the hand and completely unconstrained rate variation on the other hand (the

default). This has proven extremely useful for tree-building but may be limited for the
purposes of understanding rate variation and estimating divergence times.

This program does not implement all or even most methods now available for estimating
divergence times. In particular, it does not implement highly parametric Bayesian
approaches described by Thorne et al. (1998, or the later Kishino et al. 2001) or
Huelsenbeck et al. (2000). It provides, as a benchmark, routines that implement a
molecular clock. It also includes methods for analyzing user-specified models with &
discrete rates (where £ is small). These are particular useful for looking at correlates of
rate variation. For example, one might assign all lineages leading to species of annual
plants in a phylogeny one rate, and those leading to the perennial species a second rate.

However, the main thrust of the program is to implement methods that are nonparametric
or semiparametric rather than parametric per se. By analogy to smoothing methods in
regression analysis, these methods attempt to simultaneously estimate unknown
divergence times and smooth the rapidity of rate change along lineages. The latter is done
by invoking some function that penalizes rates that change too quickly from branch to
neighboring branch. The first, wholly nonparametric, method, nonparametric rate
smoothing (NPRS: Sanderson 1997) consists of essentially nothing but the penalty
function. Since the function includes unknown times, a suitably constructed optimality
criterion based on this penalty can permit estimation of the divergence times. This
method, however, tends to overfit the data leading to rapid fluctuations in rate in regions
of a tree that have short branches.

Penalized likelihood (Sanderson 2002) is a method that combines likelihood and the
nonparametric penalty function used in NPRS. It permits specification of the relative
contribution of the rate smoothing and the data-fitting parts of the estimation procedure.
The user can set any level of smoothing from severe, which essentially leads to a
molecular clock to effectively unconstrained. Cross validation procedures are provided to
provide data-driven methods for finding the optimal level of smoothing.

What’s new in version 1.7

This version improves the robustness of the previous implementation of divergence time
estimation routines and adds some entirely new features.

* The former is achieved by a new and stringent check on solutions via the
checkgradient command. In conjunction with the use of multiple replicates from
different initial conditions (set num time guesses...), this is the best line of
defense against incorrect results.

* A new penalty function that penalizes differences in the logarithm of rates on
neighboring branches has been added because of occasional pathological behavior of
deep time estimates from shallow calibrations (set penalty=1log).

* When multiple fossil calibrations or constraints are present, a fossil cross-validation
procedure can now be invoked (as an option in the divtime command) to undertake
model selection using penalized likelihood. This essentially uses the internal
consistency among the fossil ages to help select the appropriate level of rate
smoothing, and it can also provide a useful estimate of the age errors implied by that
level of smoothing.

* A new likelihood ratio based relative rate test (rr1ike command) has been added to
permit inferences about local shifts in rates of evolution. It has all the advantages (or
disadvantages) of other aspects of the program, such as taking advantage of multiple
calibrations or age constraints.

These new features and options (as well as some minor changes) are highlighted by the
tag, “**New**” in the text.

What was new in version 1.5

The most significant change is the addition of a new black box optimization routine to
carry out truncated Newton optimization with simple bound constraints. The code, called
TN, is due to Stephen Nash and is written in fortran. Further information is available at
NetLib (http://www.netlib.org), where the code is distributed. In general, this code is
much faster and better at finding correct solutions. However, it relies on gradients, which
I have still only derived for Langley-Fitch (clock) and Penalized Likelihood methods (see
Appendix). It is not yet implemented for NPRS.

A large number of bugs have been fixed, including some serious memory leaks. See the
revision history in the doc directory of the distribution.

Installation

The program is currently available in several forms, including as a binary executable for
Mac OS X and as source code that can be compiled under many UNIX systems,
including Linux. I now do all r8s development entirely in the Mac OS X Unix
environment but routinely check its portability to at least Linux systems. If you want to
compile the source code for some reason and are working in OS X, note that their version
of gcc does not come with the necessary FORTRAN compiler needed for a few important
functions (you will have to obtain that elsewhere, e.g., from the FINK repository).
However, the supplied executable does not require anything special to run.

If you are at all familiar with UNIX then you will have no trouble downloading and
uncompressing the code and documentation. For those who are used to point-and-click
programs on the Mac, this is not one of them! You have to run r8s in a UNIX shell
window. In OS X there is a utility called “Terminal”, which opens such a window and
presents the standard UNIX command line interface. After downloading the file

r8sxX.dist.tar.z (where XX is the version number, such as 1.7) to your machine and
learning enough UNIX to stick it in a directory somewhere, uncompress and untar it with
the following commands

uncompress r8sXX.dist.tar.Z
tar xvf r8sXX.dist.tar

This sets up a subdirectory called dist which has four subdirectories, bin, sample,

doc, and src. The first has the OS X executable, the second has several sample data
files, the third contains various versions of this manual and the fourth contains the source
code. You may want to move the executable file, r8s, into the path that your account
uses to look for binary files. If you have a system administrator, or you have root access
yourself, you can install the program in some place like /usr/local/bin so that
everyone can have access to it. If you have not set the PATH variable for your account and
are frustrated that you cannot get the program to execute, you may have to type ./r8s
rather than just r8s, assuming the program is in your current working directory.

To begin, you can check the version number of the program with by typing

r8s -v

If you’ve gotten to this point, you’ve probably learned nearly enough UNIX to use r8s
effectively.

If you are working on another UNIX operating system (so the OS X executable is
obviously useless!), or if you are on OS X but wish to compile the program from its
source code, a makefile is included that works on Linux machines and OS X (assuming
you have installed FORTRAN correctly). There are known incompatibilities with some
other compiler's libraries or headers, most of which are easy to resolve. You should own
a copy of Numerical Recipes in C (Press et al. 1992 or more recent versions) to compile
and run from source.

Some definitions

A cladogram is a phylogenetic tree in which branch lengths have no meaning. A
phylogram is a tree in which branch lengths correspond to numbers of substitutions along
branches (or numbers of substitutions per site along that branch). A chronogram is a
phylogenetic tree in which branch lengths correspond to time durations along branches. A
ratogram is a tree in which branch lengths correspond to absolute rates of substitution
along branches (apologies for the jargon).

Running the program

The program can be run in either batch or interactive modes. The default is interactive
mode, usually executed from the operating system prompt as follows:

r8s —-f datafile <cr> Or./r8s -f datafile <cr>

This invokes the program, reads the data file, containing a tree or trees and possibly some
r8s commands, and presents a prompt for further commands. Typing g or quit will exit
the program.

Batch mode is invoked similarly but with the addition of the -b switch:

r8s -b —-f datafile <cr>

This will execute the commands in the data file and return to the operating system
prompt. Finally, note that the - £ switch and datafile is optional. The program can be
run interactively with just

r8s <cr>

It is possible to subsequently load a data file from within r8s with the execute command
(see command reference).

The output from a run can be saved to a file using standard UNIX commands, such as

r8s -b —-f datafile > outfile

Notice that if you neglect to include the -b switch in this situation, the program will sit
there patiently waiting for keyboard input. You may think it has crashed or is taking
unusually long to finish (oops).

Data file format

The program reads ASCII text files in the Nexus format (Maddison et al., 1997), a
standard that is being used by increasing numbers of phylogenetic programs (despite the
grumblings of Nixon et al. 2001). At a minimum the data file should have a Trees block
in it that contains at least one tree command (tree description statement). The tree
command contains a tree in parentheses notation, and optionally may include branch
length information, which is necessary for the divergence time methods described below.

Thus, the following is an example of a nearly minimal datafile named ‘Bob’ that r8s can
handle:

#nexus

begin trees;

tree bob = (a:12, (b:10,c:2) :4);
end;

Upon execution of

r8s —-f Bob <cr>

the program will come back with a prompt allowing operations using this tree.

It is usually easiest to imbed these r8s commands into a special block in the data file
itself and then run the program in batch mode. For example:

#nexus

begin trees;

tree bob = (a:12, (b:10,c:2) :4);
end;

begin r8s;
blformat lengths=total nsites=100 ultrametric=no;
set smoothing=100;

divtime method=pl;
end;

followed by

r8s —-f bob -b <cr>

The meaning of the commands inside the r8s block will be discussed below. All
commands described in this manual can be executed within the r8s block.

Grammar for r8s block and r8s commands

All r8s commands must be found within a r8s block:

begin r8s;
commandl;
command?;

end;

All r8s commands follow a syntax similar to that used in PAUP* and several other
Nexus-compliant programs, which will be described used the following conventions:

command optionl=valuel|value2|.. option2=valuel|.. (etc);

Thus any command might have several options, each of which has several alternative
values. The vertical bars delimit alternative choices between values. Values may be
strings, integers, real numbers, depending on the option. Default values are underlined.
There are only a few exceptions to this general grammar.

Required information in the r8s block.

The program needs a few pieces of information about the trees and the format of the
branch lengths stored in the Trees block. This is provided in the b1 format command,
which should be the first command in the r8s block. Its format is

blformat lengths=total|persite nsites=nnnn ultrametric=no|yes
round=no|yes;

The 1engths option indicates the units used for branch lengths in the tree descriptions.
Depending on the program and analysis used to generate the branch lengths, the units of
those lengths may vary. For parsimony analyses, the units are typically tofal numbers of
substitutions along the branch, whereas for maximum likelihood analyses, they are
typically expected numbers per site, which is therefore dependent on sequence length.

The nsites option indicates how many sites are in the sequences that were used to
estimate the branch lengths in PAUP or some other program. Take care to insure this
number is correct in cases in which sites have been excluded in the calculations of branch
lengths (e.g., by excluding third positions in PAUP and then saving branch lengths). The
program does not recognize exclusion sets or other PAUP commands that might have
been used in getting the branch lengths.

The ultrametric option indicates whether the branch lengths were constructed using a
model of molecular evolution that assumes a molecular clock (forcing the tree and branch
lengths to be ultrametric). If ultrametric is set to yes then uncalibrated ages are
immediately available for the trees. To calibrate them against absolute age, issue a
calibrate command, which scales the times to the absolute age of one specific node in
the tree. This linear stretching or shrinking of the tree is the only freedom allowed on an
ultrametric tree. Multiple calibrations might force a violation of the information provided
by the ultrametric branch lengths. Do not use the fixage command on such trees unless
you wish to re-estimate ages completely.

The round option is included mainly for analyses of trees that are already ultrametric
rather than estimation of divergence times using the divtime command. Ordinarily input
branch lengths are converted to integer estimates of the number of substitutions on each
branch (by multiplying by the number of sites and rounding). This is done because the
likelihood calculations in divtime use numbers of substitutions as their data. However,
when merely calibrating trees that are already ultrametric, rounding can generate branch
lengths that are not truly ultrametric, because short branches will tend to be rounded
inconsistently. When working with ultrametric, user-supplied chronograms, set
round=no. Otherwise leave the default setting alone. If you set round=yes and estimate
divergence times, the results are unpredictable, because calculations of gradients always
assume data are integers.

10

If the program is run in interactive mode, this b1 format command should be executed
before any divergence time/rates analysis, although other commands will work without
this.

Naming nodes/clades/taxa: the mrca command

Many commands refer to internal nodes in the tree, and it is often useful to assign names
to these nodes. For example, it is possible to constrain the age of internal nodes to some
minimum or maximum value, and the command to do this must be able to find the correct
node. Every node is also the most recent common ancestor (“MRCA”) of a clade.
Throughout the manual an internal node may be referred to interchangeably as a “node
name” , “clade name”, or “taxon name.”

The program uses two methods to associate names with internal nodes. One is available
in the Nexus format for tree descriptions. The Nexus format permits internal nodes to be
named by adding that name to the appropriate right parenthesis in a tree description. For
example

tree betty=(a, (b, c)boop);

assigns the name boop to the node that is the most recent common ancestor of taxon b
and c.

This method is obviously error prone and not very dynamic. Therefore r8s has a special
command to permit naming of nodes. The command

MRCA boop a b;
will assign the name boop to the most recent common ancestor of a and b.

The name of a terminal taxon can also be changed by dropping one of the arguments:

MRCA boop a;

assigns the name boop to terminal taxon a.

Fixing and constraining times prior to estimating divergence times

One or more nodes can have its age fixed or constrained prior to estimating the
divergence times of all other nodes using the divtime command. Time is measured
backward from the most recent tip of the tree, which is assumed to have a time of 0 by
default. In other words, times might best be thought of as “ages” with respect to the
present. Note: the following commands are not appropriate if the input tree is already
ultrametric—use calibrate instead.

11

Fixed and free nodes. Any node in the tree, terminal or internal, can have its age fixed or
free. A node that is fixed has an age that is set to a specific value by the user. A node that
is free has an age that must be estimated by the program. By default, all internal nodes in
the tree are assumed to be free, and all terminal nodes are assumed to be fixed, but any
node can have its status changed by using the fixage or unfixage command. The format
for both of these commands is similar:

fixage taxon=angio age=150;
unfixage taxon=angio;

It is possible to fix all internal node ages with

fixage taxon=all;

or to unfix them all with

unfixage taxon=all;

but note that this applies (by default) only to internal nodes. To unfix the age of a
terminal taxon, you must specify each such taxon separately:

unfixage taxon=terminall;
unfixage taxon=terminal2;

Fixing the age of nodes generally makes it easier to estimate other ages or rates in the
tree—that is it reduces computation time, because it reduces the number of parameters
that must be estimated. Roughly speaking, the divergence time algorithms require
that at least one internal node in the tree be fixed, or that several nodes be constrained
as described below. If this is awkward, it is always possible to fix the root (or some other
node) to have an arbitrary age of 1.0, and then all rates and times will be in units scaled
by that age. Under certain conditions and with certain methods, the age of unfixed nodes
cannot be estimated uniquely. See further discussion under “Uniqueness of solutions.”
Ages persist on a tree until changed by some command. Sometimes it is desirable
to retain an age for a particular node but to fix it so that it is no longer estimated in
subsequent analyses. This can be accomplished using fixage but not specifying an age:

fixage taxon=sometaxon;

Constrained nodes. Any node can also be constrained by either a minimum age or a
maximum age. This is very different from fixing a node’s age to a specific value, and it
only makes sense if the node is free to be estimated. Computationally it changes the
optimization problem into one with bound constraints, which does not remove any
parameters, and is much more difficult to solve. The syntax for these commands is given
in the following examples:

12

constrain taxon=nodel min age=100;
constrain taxon=node2 min age=200 max age=300;

and to remove constraints on a particular node:

constrain taxon=nodel min_ age=none;

or to remove all such constraints across the entire tree (including terminals and internals):

constrain remove=all;

Once a constraint is imposed on a node, divergence time and rate algorithms act
accordingly. No further commands are necessary.

TheWKHdSminageandnaxageCanbeLmedinﬁeadofndn_age,max_age

Estimation of rates and times

The divtime command, with numerous options, provides an interface to all the
procedures for estimating divergence times and absolute rates of substitution. Given a
tree or set of trees with branch lengths, and one or more times provided with the fixage
or constrain commands, the divtime command provides calibrated divergence times
and absolute rates in substitutions per site per unit time.

The simplified format of the divtime command is

divtime method=LF|NPRS|PL algorithm=POWELL|TN|QNEWT;

The first option describes the method used; the second describes the type of numerical
algorithm used to accomplish the optimization.

Methods. The program currently implements four different methods for reconstructing
divergence times and absolute rates of substitution. The first two are variations on a
parametric molecular clock model; the other two are nonparametric or semiparametric
methods.

LF method. The Langley-Fitch method (Langley and Fitch, 1973, 1974) uses maximum
likelihood to reconstruct divergence times under the assumption of a molecular clock. It
estimates one substitution rate across the entire tree and a set of calibrated divergence
times for all unfixed nodes. The optimality criterion is the likelihood of the branch
lengths. A chi-squared test of rate constancy is reported. If a gamma distribution of rates
across sites is used, the appropriate modification of the expected Poisson distribution to a
negative-binomial is used (see under Theory below).

LF “local molecular clock” method. This relaxes the strict assumption of a constant rate
across the tree by permitting the user to specify up to k separate rate parameters. The user
must then indicate for every branch in the tree which of the parameters are associated

13

with it. This is useful for assigning different rates for different clades or for different
collections of branches that may be characterized by some biological feature (such as a
life history trait like generation time).

The first step in running this method is to “paint” the branches of the tree with the
different parameters. Assume that there will be & rate parameters, where £ > 1. The
parameters are labeled as integers from 0,..., k-1. The default Langley-Fitch model
assigns the rate parameter “0” to every branch of the tree, meaning there is a single rate
of evolution. Suppose we wish to assign some clade “bob” a different rate, “1”. Use the
following command:

localmodel taxon=bob stem=yes rateindex=1;

The option stem=yes | no is necessary if the taxon refers to a clade. It indicates whether
the branch subtending the clade is also assigned rate parameter “1”. It is important to use
all integers from 0,..., k-1, if there are k rate parameters. The program does not check,
and estimates will be unpredictable if they do not match. Using this command it is
possible to specify quite complicated patterns of rate variation with relatively few
commands.

The local molecular clock procedure is then executed by

divtime method=1f nrates=k;

where & must be greater than 1. If £ = 1, then a conventional LF run is executed. It is
important to remember that with this approach it is quite easy to specify a model that will
lead to degenerate solutions. To detect this, multiple starting points should always be
run (see below under search strategies). One robust case is when the two sister groups
descended from the root node have different rates.

NPRS method. Nonparametric rate smoothing (Sanderson, 1997) relaxes the assumption
of a molecular clock by using a least squares smoothing of local estimates of substitution
rates. It estimates divergence times for all unfixed nodes. The optimality criterion is a
sum of squared differences in local rate estimates compared from branch to neighboring
branch.

PL method. Penalized likelihood (Sanderson, 2002) is a semiparametric approach
somewhere between the previous two methods. It combines a parametric model having a
different substitution rate on every branch with a nonparametric roughness penalty which
costs the model more if rates change too quickly from branch to branch. The optimality
criterion is the log likelihood minus the roughness penalty. The relative contribution of
the two components is determined by a “smoothing parameter”. If the smoothing
parameter, smoothing, is large, the objective function will be dominated by the
roughness penalty. If it is small, the roughness penalty will not contribute much. If
smoothing is set to be large, then the model is reasonably clocklike; if it is small then
much rate variation is permitted. Optimal values of smoothing can be determined by a
cross-validation procedure described below.

14

Penalty functions. [**New**] Previous versions of PL in r8s used an additive
penalty function that penalized squared differences in rates across neighboring branches
in the tree. This seemed appropriate for many data sets in which calibrations were present
deep in the tree and most nodes to be estimated were more recent. However, in some data
sets in which calibrations are recent and users are attempting to extrapolate far backwards
in time, this penalty function has the undesirable property that it can become small just by
allowing the age of the root to become very old. This is because the estimated rates deep
in the tree will be become small in magnitude as the branch durations get large, and thus
the squared rate differences will be small as well. Version 1.7 introduces a second type of
penalty function, the log penalty, which penalizes the squared difference in the /og of the
rates on neighboring branches. Because log x — log y = log(x/y), this is effectively
penalizing fractional changes in rate rather than absolute changes. It is not always clear a
priori for what conditions it is appropriate to use one penalty versus the other, but results
can always be compared by looking at the best cross-validation scores for each. The log
penalty function may also be more consistent with Bayesian relaxed clock methods that
rely on modeling the evolution of rates by a distribution in which the log of descendant
rates is distributed around the mean of the log of ancestral rates.

To select the penalty function use the set command:
set penalty=log O set penalty=add,

Algorithms. The program uses three different numerical algorithms for finding optima of
the various objective functions. In theory, it should not matter which is used, but in
practice, of course, it does. The details of how these work will not be described here.
Eventually I hope to incorporate all algorithms in all the methods described above, but at
the moment only Powell’s algorithm is available for all methods. Table 1 indicates which
algorithms are available for which methods and under what restrictions. Unless you are
doing NPRS or the local clock model, I recommend the TN algorithm.

Powell. Multidimensional optimization of the objective function is done using a
derivative-free version of Powell’s method (Gill et al. 1981; Press et al. 1992). This
algorithm is available for each of the three methods. However, it is not as fast, or as
reliable as quasi-newton methods (QNEWT), which require explicit calculations of
derivatives. For the LF algorithm, its performance is quick and effective at finding
optima; for NPRS and PL, it sometimes gets trapped in local optima or converges to flat
parts of the objective function surface and terminates prematurely. I recommend liberal
restarts and multiple searches from several initial conditions (see under Search Strategies
below).

TN. TN implements a truncated Newton method with bound constraints (code due to
Stephen Nash). This algorithm is the best and fastest for use with LF or PL. It is not yet
implemented for NPRS. It can handle age constraints and uses gradients for better
convergence guarantees. It scales well and is useful for large problems.

15

Onewt. Quasi-newton methods rely on explicit coding of the gradient of the objective
function. This search algorithm is currently available only for LF and PL. The derivative
in NPRS is tedious to calculate (stay tuned). In addition to converging faster than
Powell’s algorithm for this problem, the available of the gradient information permits an
explicit check on convergence to a true optimum, where the gradient should be zero.
However, one shortcoming of the current implemention of this algorithm is that it only
works on unconstrained problems. If any nodes are constrained, QNEWT will almost
surely fail, as the derivatives at the solution are no longer expected to be zero. Powell or
TN must be used for constrained problems (Table 1).

Table 1. Algorithms implemented for various methods.

Method Constraints Non-extant POWELL TN QNEWT
terminals

LF no no yes yes yes
no yes yes yes no
yes no yes yes no
yes yes yes yes no

LF (local) no no yes no no
no yes yes no no
yes no yes no no
yes yes yes no no

NPRS no no yes no no
no yes yes no no
yes no yes no no
yes yes yes no no

PL no no yes yes yes
no yes yes yes no
yes no yes* yes no
yes yes yes* yes no

* but not cross-validation!

Cross-validation. The fidelity with which any of the three methods explain the branch
length variation can be explored using a cross-validation option (Sanderson 2002). In
brief, this procedure removes each terminal branch in turn, estimates the remaining
parameters of the model without that branch, predicts the expected number of
substitutions on the pruned branch, and reports the performance of this prediction as a
cross-validation score. The cross-validation score comes in two flavors: a raw sum of
squared deviations, and a normalized chi-square-like version in which the squared
deviations are standardized by the observed. In a Poisson process the mean and variance
are the same, so it seems reasonable to divide the squared deviations by an estimate of the
variance, which in this case is the observed value.

The procedure is invoked by adding the option CrRossv=yes to the divtime command.
For the PL method we are often interested in checking the cross-validation over a range

16

of values of the smoothing parameter. To automate this process, the following options
can be added to the divtime command, as in:

divtime method=pl crossv=yes cvstart=n; cvinc=n, cvnum=k;

where the range is given by {10”), 101", 10122 10¢*® D1y 4 other words the
values range on a log) scale upward from 10"V, with a total number of steps of k. The
reason this is on a log scale is that many orders of magnitude separate qualitatively
different behavior of the smoothing levels.

For most data sets that depart substantially from a molecular clock, some value of
smoothing between 1 and 1000 will have a lowest (best) cross-validation score. Once this
is found, the data set can be rerun with that level of smoothing selected. Suppose the
optimal smoothing value is found to be $* during the cross-validation analysis, then
execute

set smoothing=S5*;
divtime method=PL algorithm=gnewt;

to obtain optimal estimates of divergence times and rates.

Below I describe a new fossil-based version of this procedure, which uses some of the
same syntax as described here.

Estimating absolute rates alone. In some problems, divergence times for all nodes of the
tree might be given, and the problem is to estimate absolute substitution rates. This can

be done by fixing all ages and running divtime (note that it is not an option with NPRS,
which does not estimate rates as free parameters). For example:

fixage taxon=all;
set smoothing=500;
divtime method=pl algorithm=gnewt;

will estimate absolute substitution rates, assuming the times have been previously
estimated or read in from a tree description statement using the ultrametric option.

[#*New#x] Checking the solution: the checkGradient command

The least exciting but most significant improvement in version 1.7 is the checkGradient
command, which supercedes the older showGradient command. It provides additional
checks on the correctness of solutions found by any of the divtime methods and
algorithms. Moreover, it must be used carefully because it can falsely imply a correct
solution is incorrect. Nonetheless, I strongly recommend that any solution that you
wish to take seriously be checked using this option. The gradient check is turned on by

set checkGradient=yes;

17

To use it properly you must appreciate some of the basic calculus of optimization
problems. I recommend the book by Gill et al. (1981) for further details. Things are
relatively simple if there are no time constraints. If the objective function (say the
penalized likelihood) has a peak, then if the algorithm finds the peak, the gradient (the set
of derivatives of the objective function with respect to all the parameters) should be zero
at that peak. All of the algorithms try to make this happen either explicitly (TN and
QNEWT) or implicitly (POWELL), but it just does not always work. The
checkGradient option tests the solution’s gradient. Since no solution is exact it permits
some tolerance in the gradient’s deviation from 0 (see Gill et al. 1981), but usually if the
gradient is zero it will “look like it” in the output.

When age constraints are present all bets are off. The objective function may still have a
peak, but the parameter space is filled with “walls” that may prevent the algorithm from
getting to that peak. In fact, the peak might occur in a place that violates some of those
input constraints. So instead of finding the peak, the algorithm settles for, hopefully, the
best solution it can find without bashing through any walls. If the best solution is nudged
right up against a wall, the slope of the function at that point might well not be zero. As
data sets are including more and more fossil constraints, it is almost always the case that
divergence time solutions run up against these walls somewhere in the analysis.

An “active” constraint is one for which the estimated value of the parameter seems to run
right up against the constraint (without violating it of course). The gradient at an active
constraint can be very non-zero. However, its sign must still be correct. For example, if a
constraint is a maximum age, and it is active at the solution, the gradient for that age
parameter should be positive (the age is below the maximum and the objective function
gets better—more positive—as the age continues to increase closer and closer to the
bound). If the constraint is a minimum age, the gradient should be negative. The
checkGradient command checks the sign for each active constraint.

Unfortunately, there is a small technical issue. How do we determine if the constraint is
active or not? How close does the solution have to be to the “wall” before we allow it to
have a non-zero gradient? In practice we set a small tolerance level with the command

set activeEpsilon=real number;

This number is combined with the age scale of the tree (the age of the root) to determine
a distance from the constraint, within which a solution will be considered “close enough”.
This value is displayed in the checkGradient output. Two things can go wrong. First, if
the tolerance is too small, checkGradient may not realize that the constraint is active,
may conclude that a gradient’s magnitude is too big, and decide that the gradient check
has failed. If the tolerance is too large, then the constraint may be treated as active when
it is not. The gradient might then be approximately zero, but because of numerical
approximations have a random sign, leading to a failed check. Generally, I try to avoid
this by ignoring any check of active parameters if the magnitude of the gradient is small
(regardless of sign), but this is subject to numerical imprecision. Finally, one should
avoid placing minimum and maximum age constraints that are very close together on the

18

same node. Use fixage instead. If these constraints are too close to each other, the
program will not know to which wall it is bumped up against, and it cannot predict which
is the correct sign. This can be fixed if necessary by reducing the value of
activeEpsilon.

If this sounds complicated, it is.

And, a final reminder that the gradient can be zero at a saddle point or on a plateau. The
only check on this (without calculating the Hessian matrix...) is the unrelenting use of
multiple initial starting conditions (set num_time guesses...)

Should you use checkGradient during cross-validation? It is not computationally
expensive, but I don’t necessarily recommend that it be used without inspection of the
results. It is conservative and given enough opportunities will probably cause a “failed”
optimization warning to be registered if it is called enough times (as it is likely to be
during cross-validation).

Showing ages and rates: the showage command

Each run of divtime produces a large quantity of output (which can be modified by the
set verbose option), much of which is in a rather cryptic form. To display results in a
cleaner form, use the showage command which shows a table giving the estimated age of
each node in the tree, indicating whether the node is a tip, internal node, or name clade,
whether the node is fixed or unfixed and what the age constraints, if any are set to. It also
indicates (in square brackets) for every branch what rate index has been assigned to it
using the 1ocalmodel command (the default is 0).

This command also indicates estimated rates of substitution on every branch of the tree.
Branches are labeled by the node that they subtend. The estimates are different for the
different methods. For example, under LF, there is only a single estimate of the rate of
substitution, since the model assumes a clock—one rate across the tree. However, the
table also includes a column for the “local rate” of substitution, which is just the observed
number of substitutions (branch lengths) divided by the estimated time duration of the
branch. For NPRS, this local rate is the only information displayed. For PL, each branch
has a parameter estimate itself, which is displayed along with the local rate as described
for the other two methods. For PL the parameter estimate should be interpreted as the
best local rate estimate; the “local rate” is mainly provided for comparison to NPRS and
LF methods. When examining a user supplied chronogram (assumed to be ultrametric),
the program provides the single rate of substitution common across all branches.

[#*/New##] Use the command
showage shownamed=yes;

to display time information for only nodes in the tree that have been named by the
MRCA command. This is useful when sorting through large tables of dates.

19

Showing trees and tree descriptions: the describe command

The describe command is useful for outputting simple text versions of trees either or
before or after analyses have been run, and for generating tree description statements that
can be imported into more graphically savvy packages, such as PAUP*. The general
format is

describe plot=cladogram|phylogram|chronogram|ratogram|
chrono_description|phylo description|rato description|node info;

The first four option values generate an ASCII simple text version of a tree. A cladogram
just indicates branching relationships; a phylogram has the lengths of branches
proportional to the number of substitutions; a chronogram has the lengths of branches
proportional to absolute time; a ratogram has them proportional to absolute rates.

The three description statements print out Nexus tree description versions of the tree. In
the phylo description, the branch lengths are the standard estimated numbers of
substitutions (with units the same as the input tree); in chrono _description they are
scaled such that a branch length corresponds to a temporal duration; in

rato description, the branch lengths printed correspond to estimated absolute rates in
substitutions per site per unit time.

Option value of node_info prints a table of information about each node in the tree.

Other options include

plotwidth=k;

where £ is the width of the window into which the trees will be drawn, in number of
characters.

The set command

The set command controls numerous details about the environment, output, optimization
parameters, etc. See the command reference for further information

Scaling tree ages: the calibrate command

This command is useful for changing all the times on a tree by a constant factor. For
example, if the input tree is scaled so that the distance from root to tip is 1.0, but you
would like to define the age of the root at 500 MY and display the “calibrated” ages of
the other nodes relative to the root. The tree must already be ultrametric (either
supplied as such by the user, or reconstructed by the divtime command).

20

calibrate taxon=nodename age=x;

where taxon refers to some node with a known age, x. All other ages will be scaled to
this node.

When importing chronograms from other programs (using b1 format
ultrametric=yes), the ages will be set arbitrarily so that the root node has an age of 1.0
and the tips have ages of 0.0. Issue the calibrate command to scale these to some
node’s real absolute age.

Warning: do not mix calibrate and fixage commands. The former is only to be used
on ultrametric trees, in situations where you are not estimating ages with the divtime
command; the latter should only be used prior to issuing the divtime command.

Profiling across trees

Often it is useful to summarize information about a particular node in a tree across a
collection of trees that are topologically identical, but which have different age or rate
estimates. For example, a set of phylograms can be constructed by bootstrapping
sequence data while keeping the tree fixed (Baldwin and Sanderson 1998; Korber et al.
2000; Sanderson and Doyle 2001). This generates a space of phylograms, which when
run through divtime, yields a confidence set of node times for all nodes on the tree. The
following command will collect various types of information for a node across a
collection of trees.

profile taxon=nodename parameter=length|age|rate;

Relative rates tests: the rrlike command [*#*New*#]

New in version 1.7 is a likelihood ratio test of whether the two (or more) clades
descended from a particular node are evolving at the same constant rate. It is invoked
with

rrlike taxon=node name;

The test uses the same modeling assumptions as the Langley-Fitch clock model. It tests
the hypothesis that a model with one constant rate for the clade whose MRCA is

node name fits the data as well as a model in which each of the (two or more) subclades
descended from that node have different constant rates.

The test is versatile in that it can take any fixed or constrained node ages into account
while performing the test. However, note carefully that the tree outside of the clade
defined by node name is ignored entirely. This means that there has to be the usual
minimum of one fixed node age within the clade of interest! If this is not the case, you
will have to set the age of node name to 1.0 or some other arbitrary value to proceed. If

21

you ignore this advice, the program will try to set the age of the node to 100.0 units. This
can cause other problems if this arbitrary age conflicts with constraints deeper in the tree.

Fossil-based model cross-validation [*%New::]

In previous versions of r8s model-selection for penalized likelihood has relied entirely on
a cross-validation scheme that involves pruning terminal branches and calculating
prediction error. Given the increasing number of studies that include several fossil ages,
another possibility is to use these dates to assist in model selection. At the same time, this
might provide another criterion to evaluate the quality of the models implemented in r8s.
This fossil-based model cross-validation is invoked in r8s by adding an option to the
divtime command in conjunction with specifying cross-validation with the crossv
option. There are two different flavors:

divtime crossv=yes fossilconstrained=yes ...;
divtime crossv=yes fossilfixed=yes ...;

In the first, “constrained” version the program does the following:

For each node, £, that has a constraint (fixed nodes are not affected)

(1) unconstrains node k

(2) does a full estimation of times and rates on the tree,

(3) if the estimated age of node k would have violated the original constraint on
node £, calculate the magnitude of that violation (note that constraints are usually one
sided, so that we consider a constraint “violated” if it is older than a maximum age or
younger than a minimum age).

(4) keeps a running total of the magnitude of these violations across nodes
examined

If the inference method is LF or NP then one round of cross-validation is invoked. If the
method is PL, then the entire analysis is repeated over the usual range of smoothing
values specified by the divtime options cvstart, cvinc, and cvnum described elsewhere
for conventional cross-validation. The analysis reports two kinds of error, a fractional
value per constrained node, and a raw value per constrained node in units of absolute
time.

The second “fixed age” cross-validation analysis works slightly differently:

For each node, £, that is fixed (constrained nodes are not affected) the program

(1) “unfixes” the age of node &

(2) does a full estimation of times and rates on the tree,

(3) calculates the absolute value of the deviation of the newly estimated age of
node k from its original “fixed” value.

(4) keep a running total of the magnitude of these deviations across nodes
examined

22

The data set should have more than one fixed age for this approach because deletion of a
solitary fixed age will preclude estimation of any times.

This method was used in a recent paper to examine divergence times in two data sets with
mutliple fossil calibrations (Near and Sanderson 2004), but its utility in general is not yet
known.

Substitution models and branch lengths

All the algorithms in r8s assume that estimates of branch lengths for a phylogeny are
available, and that these lengths (and trees) are stored in a Nexus style tree command
statement. Both the trees and the lengths will have been provided by another program,
such as PAUP* or PAML. The original sequence data used to estimated these lengths are
not used by r8s and are ignored even if provided in the data file. This is a deliberate
design decision which offers significant advantages as well as certain limitations. The
advantages are mainly with respect to computational speed and robustness of the
optimization algorithms. Reduction of the character data to branch lengths permits much
larger studies to be treated quickly. It also permits analytical calculation of gradients of
objective functions for some of the algorithms in the program, which permits use of
efficient numerical algorithms and checking of optimality conditions at putative
solutions, which is harder with character-based approaches.

The risk, of course, is that some information is lost in the data reduction. However, the
problem of estimating rates and times is considerably different than the problem of
estimating tree topology. The latter is bound to be quite sensitive to the distribution of
states among taxa in a single character, since this provides the raw evidential support for
clades (even in a likelihood framework, where it is essentially weighted by estimates of
rates of character evolution). The estimation of rates and divergence times, on the other
hand, is simpler in the sense that one can at least imagine a transformation of branch
length to time. For example, with a molecular clock, the expected branch lengths among
branches with the same duration of time should be a constant.

Complex models of the substitution process have been described for nucleotide and
amino acid sequence data, and it is possible to estimate the parameters of these models
for sequence data on a given tree using maximum likelihood (or other estimation
procedures) in programs such as PAUP* or PAML. Two important aspects of these
models should be distinguished. One is the set of parameters associated with rates
between alternative character states at given site in the sequence. For DNA sequences this
is described by a 4X4 matrix of instantaneous substitution rates, which might have as
many as 12 free parameters or as few as one (Jukes-Cantor). For amino acid data the
matrix is 20 X 20, and for codons it might well by 64 X 64. Model acronyms abound for
the various submodels possible based on these matrices. These models form the basis of a
now standard formulation of molecular evolution as a Markov process (see Swofford et
al. 1996, or Page and Holmes, 1998, for a review).

23

The other aspect of these models is the treatment of rate variation between branches in a
phylogeny. By default, for example, PAUP* assumes the so called “unconstrained”
model which permits each branch to have a unique parameter, a multiplier, which permits
wide variation in absolute rates of substitution. To be more precise, this multiplier
confounds rate and time, so that only the product is estimated on each branch. Under this
model it is not possible to estimate rate and divergence times separately. Alternatively,
PAUP* can enforce a molecular clock, which forces a constant rate parameter on each
branch and then also estimates unknown node times. This is a severe assumption, of
course, which is rarely satisfied by real data, but it is possible to relax the strict clock in
various ways and still estimate divergence times.

The approach taken in r8s is to simplify the complexities of the standard Markov
formulation, but increase the complexity of models of rate variation between branches.
This is an approximation, but all models are. The main ingredients are a Poisson process
approximation to more complex substitution models, and inclusion of rate variation
between sites, which is modeled by a gamma distribution (Yang 1996). The shape
parameter of the gamma distribution can be estimated in PAUP* (or PAML, etc.) at the
same time as branch lengths are estimated. It is then invoked with the set command
using:

set rates=equal |gamma shape=a;

where the variable shape is the value of the normalized shape parameter, o, of a gamma
distribution. The shape parameter controls the possible distributions of rates across sites.
If a < 1.0 then the distribution is monotonically decreasing with most sites having low
rates and a few sites with high rates. If is o = 1.0 the distribution is normal, and as o0 —o0
the distribution gets narrower, approaching a spike, which corresponds to the same rate at
all sites. The effect of rate variation between sites is much less important in the
divergence time problem if branch lengths have already been correctly estimated by
PAUP#*, than if one were using the raw sequence data themselves. Unless the branch
durations are extremely long, the alpha value extremely low or the rate very high, the
negative binomial distribution that comes from compounding a Poisson with a gamma
distribution is very close to the Poisson distribution. Consequently, it is usually
perfectly safe to set rates=equal. For this reason, only algorithm=powell takes
into account any gamma distributed rate variation; the gnewt and tn algorithms
treat rates as equal for all sites.

Recommendations for obtaining trees with branch lengths.

PAUP* is a very versatile program for obtaining phylogenetic trees and estimating
branch lengths, but a few of its options should be kept in mind. First, save trees with the
aLTNEXUS format (without translation table), which saves trees with the taxon names as
integral parts of the tree description. At the moment r8s does not use translation tables.
Second, save trees as rooted rather than unrooted. By default, PAUP* saves trees as
unrooted, whereas most analyses in r8s assume the tree is rooted. The reason this is
important is that conventionally unrooted trees are stored with a basal trichotomy, which

24

reflects the ambiguity associated with not having a more distant outgroup (i.e., it is
impossible for a phylogenetic analysis to resolve the root node of a tree without more
distant outgroups). Upon reading an unrooted tree with a basal trichotomy, rgs will
assume the trichotomy is “hard” (i.e., an instant three-way speciation event, as it does
with all polytomies), and act accordingly.

This requires the user to root the tree perhaps arbitrarily, or at best on the basis of further
outgroup information. However, in converting the basal trichotomy to a dichotomy,
PAUP* creates a new root node, and it or you must decide how to dissect the former
single branch length into two sister branches. Left to its own, PAUP decides this
arbitrarily, giving one branch all the length and the other branch zero, which is probably
the worst possible assumption as far as the divergence time methods in r8s are
concerned. The solution I recommend is to make sure every phylogenetic analysis that
will eventually be used in r8s analyses start out initially with an extra outgroup taxon
that is distantly related to all the remaining taxa. The place where this outgroup attaches
to the rest of the tree will become the root node of the real tree used in r8s, once it is
discarded. It will have served the purpose in PAUP of providing estimates of the branch
lengths of the branches descended from the eventual root node.

The extra outgroup can be deleted manually from the tree description commands in the
PAUP tree file, or it can be removed using the prune command in r8s.

Uniqueness of solutions

Theory (e.g. Cutler 2000) and experimentation with the methods described above shows
that it is not always possible to estimate divergence times (and absolute rates) uniquely
for a given tree, branch lengths, and set of fixed or constrained times. This can happen
when the optimum of the objective function is a plateau, meaning that numerous values
of the parameters are all equally optimal. Such “weak optima” should be distinguished
from cases in which there are multiple “strong” optima, meaning there is some number of
multiple solutions, but each one is well-defined, corresponding to a single unique
combination of parameter values. Multiple strong optima can often be found by sufficient
(if tedious) rerunning of searches from different initial conditions. Necessary and
sufficient conditions for the existence of strong optima are not well understood in this
problem, but the following variables are important.

e Is any internal node fixed, and if so, is it the root or not?

* Are the terminal nodes all extant, or do some of them have fixed times older than the
present (so-called “serial” samples, such as are available for some viral lineages)

* Are minimum and/or maximum age constraints present?

* How much does the reconstruction method permit rates to vary?

The following conclusions appear to hold, but I would not be shocked to learn of
counterexamples:

25

* Under the LF method a sufficient condition for all node times to be unique is that at
least one internal node be fixed.

* Under the LF /ocal clock method, the previous condition is not generally sufficient,
although for some specific models it is.

* Under the LF method a sufficient condition for all node times to be unique is that at
least one terminal node must be fixed at an age older than the present.

* Under the NP method condition the previous condition is not sufficient.

* Minimum age constraints for internal nodes, by themselves, are not sufficient to allow
unique estimates under any method.

* Under LF, maximum age constraints sometimes are sufficient to permit the estimation
of ages uniquely when combined with minimum age constraints. Generally this works
when the data want to stretch the tree deeper than the maximum age allows and
shallower than the minimum age allows. If the reverse is true, a range of solutions
will exist

Bootstrap confidence intervals on parameters

As of version 1.7, there are no longer built in commands to provide immediate
information about confidence intervals on parameters. They were unstable and difficult to
interpret. Instead I recommend a lengthy bootstrap procedure as follows.

The idea is to generate chronograms from bootstrapped data. This means generating a
series of phylograms based on a single tree (meaning the same topology but different sets
of branch lengths), reading these into 18s, estimating ages for all trees, and then using the
profile command to summarize age distributions for a particular node. The central 95%
of the age distribution then provides a confidence interval (see Baldwin and Sanderson
1998; Sanderson and Doyle 2001). This can be a fairly tedious procedure unless you are
willing to write scripts to automate some of the work, or use some that have been
developed by other workers in the systematics community (e.g., Torsten Eriksson’s
package available at http://www.bergianska.se/ index kontaktaoss_torsten.html).

Several steps are involved:

a) From the original data matrix, generate N bootstrap data matrices using PHYLIP
(currently PAUP does not report the actual matrices).

b) Convert these to Nexus formatted files (here is where some programming ability
helps)

c) Construct a “target” tree—the single tree topology upon which dates will be
estimated. This can be built any way you want, but presumably will be based on the
same data as in (a). Make a Nexus tree file of this target tree.

d) Add a PAUP block to each of the N bootstrapped Nexus files. The PAUP block
should contain PAUP commands to (i) read the target tree file (after the data matrix
has been stored, of course), (ii) set the options for the appropriate substitution model
(e.g., using likelihood), and (iii) save the target tree with branch lengths (i.c., as a
phylogram) to a common file for all N replicates. Note that r8s does not read Nexus
translation tables, so you should save trees with the arTnExUs format in PAUP.

26

e) Finally, the tree file with N phylograms is read into r8s and divergence times
estimated. Use the profile command to summarize the distribution of ages for a
particular node of interest.

Search strategies, optimization methods, and other algorithmic issues

Many things can go wrong with the numerical algorithms used to find the optimum of the
various objective functions in the divtime command:

1) the algorithms may fail to terminate in the required maximum number of iterations
(variable maxiter), giving an error message

2) they may terminate some place that is not an optimum even though it may have a
gradient of zero or a flat objective function (such as a saddle point, or local plateau, a
so-called “weak optimum”)

3) they may terminate at a local optimum, but not a global optimum.

Problem 1 can sometimes (though surprisingly rarely) be solved just by increasing the
value of maxiter parameter (only when using algorithm=powell). Values above a few
thousand, however, seem adequate for any solution that is going to be found. Above that,
the routines will probably bomb for some other reason. This value is not adjustable for
the TN algorithm, as it rarely helps.

Problem 2 is more pathological and harder to detect. Assuming that the checkGradient
option reveals that the gradient for the inactive constraints is actually zero, it is still
possible that the solution is on a saddle or a plateau, rather than a true peak. If so, it may
be possible to discover this by perturbing the solution and seeing if it returns to the same
point. If it is a local optimum, it should. Perturbations of the solutions in random
directions are implemented by setting num_restarts to something greater than zero,
which will rerun the optimization that number of times. The variable perturb factor
controls the fractional change in the parameter values that are invoked in the random
perturbation. If you see that this tends to frequently find better solutions, you should
suspect that the algorithm is having trouble finding a real optimum. Multiple starts of the
optimization from different initial conditions may also give provide evidence of the
reality of an optimal value. Multiple starts are invoked by setting num_time guesses=n,
where n>1. This selects a random set of initial divergence times to begin the
optimization, and repeats the entire process n times. The results are ideally the same for
each replicate. If not there are multiple optima. The command set seed=k, where k is
some integer, should be invoked to initialize the random number generator.

Problem 3 is a matter of finding the all the real optima if more than one exists. Because
these algorithms are all hill-climbers, they will at best find only one local optimum in any
one search from an initial starting condition. To find multiple optima, it is necessary to
start from several different random starting values. As described above, this is
implemented by the set num time guesses=n, where n is greater than 1.

27

General advice and troubleshooting

Since the last major revision in 2002, I have had the opportunity to look at many data sets
on which r8s performs well and many on which it does not. Frankly, I’'m always
surprised when it works on any data set that has more than about 35 taxa. The
multivariate optimization problems handled by r8s are more difficult than some other
phylogenetic problems in two respects: first, optimization is subject to constraints, and
second, the problem’s objective function itself can become “ill-conditioned” (small
changes in the data can lead to large changes in the estimated solution)in several
ways—for example, by specifying smoothing levels to be too low or too high in
penalized likelihood.

In general, I recommend the a1gorithm=TN option for all LF or PL divergence time
searches, including anything involving constraints or cross validation or both. It certainly
does not hurt to check with algorithm=powell. However, this is much slower
(especially for cross-validation work). Also be aware that results are more a bit more
variable with this algorithm, and it may be necessary to increase the stringency of its
search by making the stopping tolerance criterion smaller (e.g., set ftol=le-9 which is
lower than the default 1e-6.).

Problems can crop up in a variety of contexts. Some involving numerical/algorithmic
issues were discussed in the previous section. Others include:

Problems stemming from the data set and inferred phylogram, such as when:

* Sequence variation is very low and branch lengths are very short or zero. The
divtime command requires that internal branches that are 0-length be collapsed with
the collapse command. Terminal 0-length branches are also a problem, which I have
tried to solve with various hacks, such as putting a lower bound on rates and durations
so as to prevent terminal 0-length branches being inferred pathologically to have a
rate of zero, which would cause no end of problems in the numerics. See the set
minRateFactor and set minDurFactor options. Some data sets I have seen have
large numbers of identical terminal taxa on very short or 0-length branches
(especially some population level data or close phylogeographic studies). I suggest
reducing all these clades to one exemplar.

* Rate variation is extremely high and fairly chaotically distributed across the tree. This
is apparent by observing extreme heterogeneity of branch lengths on the phylogram.
NPRS and PL perform best if there is autocorrelation in rates across the tree. The user
will probably obtain estimates by assuming a clock that are as accurate as those
obtained with NPRS or PL.

Problems in calibration:

* You must have either (i) at least one fixed age, or (ii) possibly a combination of one
or more each of minimum and maximum age constraints, to have any hope of finding

28

unique solutions. The second case is much more problematic, but even the first can
fail if the clock is relaxed too much with low smoothing values.

* The most robust data sets have fixed ages or constraints near the root of the tree

* A number of problems and perceived problems have come up in data sets where the
fixed age(s) or constraints are relatively shallowly placed in the tree and the problem
is to estimate deeper nodes. I mentioned this case as potentially problematic in the
one FAQ in vers. 1.5’s manual. The issue is that the additive penalty function can
allow nearly equally optimal solutions over a range of possibly old ages deep in the
tree as smoothing is relaxed. Some people have referred to this as a “bias” toward
older ages. I prefer to see it as a “feature” (!), but have added the log penalty function
in version 1.7 for users who want to explore a different penalty function that should
behave differently in this situation. Comparison of minimum CV scores between
methods can help the user decide if one is better. I am reluctant to conclude that this
reflects a bias in the additive penalty until simulation studies are done, but I do think
that the log penalty is more intuitively reasonable for deep extrapolation problems.
Comparisons with other methods are not compelling, since, for example, some
require the imposition of a prior distribution on the root time. In r8s there is no prior
penalty assigned to any node’s time as long as it does not violate a constraint.
Imposition of priors can certainly help with difficult divergence time problems, but it
obviously comes at the cost of making additional assumptions.

Problems occurring during cross-validation:

* [t may register errors during some of the taxon prunings, causing the entire score for
that smoothing value to be invalidated. One workaround is to try multiple initial starts
with set num_time guesses. The problem may occur only for particular initial
conditions. However, it is often a signal that the smoothing value is too low or too
high, causing the problem to be ill-conditioned. You may have to be satisfied with a
narrower range of smoothing parameters. You can always estimate the value for very
high smoothing values by just running an LF analysis. It is worth playing around with
the range of values, because the optimal range depends on the data and whether and
additive or log penalty is used.

* Sometimes (though not often), the CV score does not exhibit the expected dip at
intermediate values of smoothing. Trivially, this can occur if you have not examined
a broad enough range of smoothing parameters (the range of 10° to 10" is often a
good place to start). However, some data monotonically decreases its CV score as
smoothing gets large. This implies that a model of a molecular clock does as well or
better at predictive cross-validation as a PL model. Use it instead to estimate ages.
This can occur even if the data show considerable rate heterogeneity, but the
heterogeneity has no pattern to it across the tree.

* Even less often there appears to be no smooth pattern to the CV score as a function of
smoothing. Usually this occurs in a case like that just described and the percentage
fluctuation in the scores is usually small (<5%) of the CV scores themselves. This
again should lead to the conclusion that a clock is just as good a model as a relaxed
clock. If there are data sets that have wild fluctuations that are not just due to
numerical problems in the optimizations, I would like to hear about it. Note that in

29

both of these last two cases, estimated divergence times may change with different
smoothing values under PL. This does not mean that the PL “model” should be
accepted over the LF model.

Finally, based on examining many data sets that are reported to have problems, I
conclude that the best test of any result is numerous repeated runs from different initial
conditions. To this I would add judicious use of the new checkGradient feature.

Bug reports (thanks, apologies, etc.)

Thanks to all of you who have sent me bug reports and data sets in the past. I apologize
for my very uneven responses to these. Many of them have been very useful and some
have led to major changes in the code. Unfortunately, in a few cases, the only answer
was, “it doesn’t work with your data”.

I will continue to look at bug reports and try to fix them. Please send a completely self-
contained nexus data file that exhibits the misbehavior. Send them to me at

mjsanderson@ucdavis.edu

with a brief description of the problem. Thankfully I am getting fewer and fewer requests
for basic help with UNIX as people become more familiar with this environment, so in
the last year or so most bug reports have focused on real r8s specific issues.

“Extra commands and features”

The last three commands listed in the command reference are not discussed in detail in
this manual because they are not directly related to divergence times or rates. The mrp
command constructs an MRP matrix for later supertree construction, based on all the
input trees in the input nexus file. The simulate command provides a set of functions to
generate random trees according to various models. The bd command plots the log
species richness of the clade as a function of time and reports some statistics. The mrp
command is quite reliable and I have found it handles large inputs quite well (many trees,
many taxa). The simulate command has been used by several people in addition to
myself, but has not been tested extensively. The bd command is very much under
construction at this point, and should not be trusted. Other, even less well documented,
commands are buried in the junkyard of the source code, and you can feel free to look
through the source file ReadNexusFile2.c to excavate these.

Command reference

30

Command Option Value Description Default
value
blformat lengths = persite | (input trees have branch ~ total?
total lengths in units of
numbers of substitutions
per site | lengths have
units of total numbers of
substitutions
nsites = <integer> (number of sites in 1
sequences that branch
lengths on input trees
were calculated from)
ultrametric = yes | no (input trees have no
ultrametric branch
lengths)
round = yes | no (round estimated branch ~ yes
lengths to nearest
integer)
calibrate taxon = <nodename> (scales the ages of an
ultrametric tree based on
the node nodename...)
age = <real> (...which has this age)
cleartrees (removes all trees from
memory)
collapse (removes all zero-length
branches from all trees
and converts them to
hard polytomies)
constrain taxon = <nodename> (enforces a time
constraint on node
nodename, which may
be either...)
minage (min age) = <real> | (...a minimum age | or
none “none” removes the
constraint)
maxage (max_age) = <real> | (...maximum age, | or
none removes the constraint)
remove = all (removes all constraints
on the tree)
describe plot = cladogram |
phylogram |
ratogram |

chrono description

|
phylo description|

rato _description
node info

31

plotwidth = <integer>
divtime method = LF | (estimate divergence
NPRS | times and rates using
PL Langley-Fitch | NPRS |
penalized likelihood)
algorithm = POWELL | (using this numerical
ONEWT algorithm)
TN
nrates = <integer> (number of rate
categories across tree
for use with local
molecular clock)
confidence = YES | NO (estimate confidence
intervals for a node)
taxon = <taxonname> (node for confidence
interval)
cutoff = <real> (decrease in log
likelihood used to
delimit interval)
crossv = yes | no (turn on cross-
validation)
cvstart = <real> (log10 of start value of
smoothing)
cvinc = <real> (smoothing increment
on log10 scale)
cvnum = <integer> (number of different
smoothing values to try)
fossilconstrained= yes | no (fossil cross validation no
removing constrained
nodes in turn)
fossilfixed= yves | no (fossil cross validation no
removing fixed nodes in
turn)
tree = <integer> (use this tree number)
execute <filename> (execute this filename
from r8s prompt)
fixage taxon = <taxonname> (fix the age of this node
at the following value
and no longer estimate
it...)
age = <real> (...age to fix it)
localmodel taxon = <taxonname> (assign all the branches
descended from this
node an index for a local
molecular clock model)
rateindex = <integer> (an integer in the range 0
[0,..., k-1] where k is
the number of different
allowed local rates)
stem = yes | no (if “yes” then include no

the branch subtending
the node in this rate
index category)

32

mrca

cladename
terminall
terminal?2
[etc.]

(assign the name
cladename to the most
recent common ancestor
of terminall, terminal2,
etc.—NB! the syntax
here does not include an
equals sign. Also, if
there is only one
terminal specified, the
terminal is renamed as
cladename)

profile

taxon=

parameter=

<nodename>

agellength|rate

(calculates summary
statistics across all trees
in the profile for this
node)

(the statistics are for this
selected parameter only)

prune

taxon=

<taxonname>

(delete this taxon from
the tree)

quit

(self evident)

reroot

taxon=

<taxonname>

(reroot the tree making
everything below this
node a monophyletic
sister group of this
taxon)

rrlike

taxon=

<taxonname>

(perform a likelihood
ratio test for molecular
clock in the subclades
descended from node
taxonname)

set

rates =

shape =
smoothing=
npexp =
verbose =

seed =
num_time guesses=

equal |
gamma

<real>
<real>

<real>

>1
<integer>
<integer>

(all sites have the same
rates | sites are
distributed as a gamma
distribution)

(shape parameter of the
gamma distribution)
(smoothing factor in
penalized likelihood)
(exponent in NPRS
penalty)

(suppress almost all
output)

(display more output)
(random number seed)
(number of initial starts

equal

33

in divtime, using
different random
combinations of
divergence times)

num restarts = <integer> (number of perturbed 1
restarts after initial
solution is found)

perturb factor= <real> (fractional perturbation 0.05
of parameters during
restart)

ftol = <real> (fractional tolerance in

stopping criterion for
objective function)
maxiter = <integer> (maximum allowed 500
number of iterations of
Powell or Qnewt
routines)
barriertol = <real> (fractional tolerance in
stopping criterion
between barrier
replicates in constrained
optimization)
maxbarrieriter = <integer> (maximum allowed
number of iterations of
constrained optimization
barrier method)
barriermultiplier= <real> (fractional decrease in
barrier function on each
barrier iteration during

constrained
optimization)
initbarrierfactor= <real>
linminoffset= <real>
contractfactor= <real>
showconvergence = yes | no (display objective no
function during
approach to optimum)
checkgradient = yes | no (check if gradient is no

zero at solution, or has

correct signs in

constrained problems)
showgradient = ves | no (display the analytically — no

calculated gradient and

norm at the solution, if

it is available)
trace = yes | no (show calculations at

every iteration of the

objective function—for

debugging purposes)
minRateFactor = <real> (imposed lower bound 0.05

on the rates in PL as a

fraction of the

approximate mean rate)
minDurFactor = <real> (imposed lower bound 0.001

on the durations of 0-

length terminal branches

activeEpsilon

add|log

<real>

as a fraction of root’s
age)

(penalty function for PL
method)

(let € = activeEpsilon x
age of root node; then if
a solution is within € of
a constraint, it is
considered “active”: see
checkGradient)

34

add

0.001

showage

shownamed

yes | no

(display a table with
estimated ages and rates
of substitution)

(only display age
information for nodes
that have been named
using MRCA command)

no

unfixage

all |
<taxonname>

(all node <taxonname>
to have its age estimated
| all all internal nodes to
be estimated)

“Extra”
commands
and
features

mrp

baum|purvis

yes | no

(construct an MRP
matrix representation
for the collection of
trees using either
method)

(write a Nexus style
‘wts’ command to the
output file based on the
input tree descriptions’
specified branch
lengths—these should
have been save so as to
correspond to bootstrap
support values)

baum

simulate

diversemodel=

speciation=
extinction=

yule |
yule c |
bdforward

<real>

<real>
<real>
<integer>

(simulate a random tree
according to one of
three stochastic
processes—see text)
(age of root node,
measured backward
from the present, which
is age 0)

(speciation rate)
(extinction rate)
(conditioned on this

O
o O

nreps=

seed=
charevol=

ratemodel=

startrate=

changerate=

ratetransition

minrate=
maxrate=
infinite=

<integer>

<integer>
yes | no

normal |autocorr

<real>

<real>

<real>

<real>
<real>
yes | no

final number of taxa)
(number of trees
generated)

(random number seed)
(generate branch
lengths, instead of times
only)

(rates are either chosen
randomly from a normal
distribution with mean
of ‘startrate’ and
standard deviation of
‘changerate’; or in an
autocorrelated fashion
starting with ‘startrate’
and jumping by an
amount ‘changerate’
with probability
‘ratetransition’
(character evolution rate
at root of tree)

(either standard
deviation of rate or
amount that rate
changes per jump in
rate, depending on
model)

(probability that rate
changes at a node under
AUTOCORR model)
(lower bound)

(upper bound)

(default of ‘no’ means
that the branch length is
determined as a Poisson
deviate based on the rate
and time; if ‘yes’, then
branch length is set to
the expected value,
which is just rate*time)

35

no

no

bd

divplot=

yes | no

(takes a chronogram and
plots species diversity
through time, and
estimates some
parameters)

36

References

Ayala, J. A., A. Rzhetsky, and F. J. Ayala. 1998. Origin of the metazoan phyla: molecular
clocks confirm paleontological estimates. Proc. Natl. Acad. Sci. USA 95:606-611.

Cutler, D. J. 2000. Estimating divergence times in the presence of an overdispersed
molecular clock. Mol. Biol. Evol. 17:1647-1660.

Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical optimization. Academic Press,
New York.

Hasegawa, M., H. Kishino, and T. Yano. 1989. Estimation of branching dates among
primates by molecular clocks of nuclear DNA which slowed down in Hominoidea. J.
Human Evol. 18:461-476.

Huelsenbeck, J. P., B. Larget, and D. Swofford. 2000. A compound Poisson process for
relaxing the molecular clock. Genetics 154:1879-1892.

Kishino, H., J. L. Thorne, and W. J. Bruno. 2001. Performance of a divergence time
estimation methods under a probabilistic model of rate evolution. Mol. Biol. Evol.
18:352-361.

Korber, B., M. Muldoon, J. Theiler, F. Gao, R. Gupta, A. Lapedes, B. H. Hahn, S.
Wolinsky, and T. Bhattacharya. 2000. Timing the ancestor of the HIV-1 pandemic
strains. Science 288:1789-1796.

Kumar, S., and S. B. Hedges. 1998. A molecular timescale for vertebrate evolution.
Nature 392:917-920.

Langley, C. H., and W. Fitch. 1974. An estimation of the constancy of the rate of
molecular evolution. J. Mol. Evol. 3:161-177.

Maddison, D. R., D. L. Swofford, and W. P. maddison 1997. NEXUS: An extensible file
format for systematic information. Syst. Biol. 46:590-621.

Near, T. J., and M. J. Sanderson. 2004. Assessing the quality of molecular divergence
time estimates by fossil calibrations and fossil-based model selection. Phil. Trans. R.
Soc. London B, in press.

Nixon, Kevin C.; Carpenter, James M.; Borgardt, Sandra J. 2001. Beyond NEXUS:
Universal cladistic data objects. Cladistics. 17:S53-S59.

Page, R. D. M., and E. C. Holmes. 1998. Molecular evolution: A phylogenetic approach.
Blackwell Scientific, New York.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical
recipes in C. Cambridge University Press, New York. 2nd ed.

Rambaut, A., and L. Bromham. 1998. Estimating divergence data from molecular
sequences. Mol. Biol. Evol. 15:442-448.

Sanderson, M. J. 1997. A nonparametric approach to estimating divergence times in the
absence of rate constancy. Mol. Biol. Evol. 14:1218-1231.

Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence
times: a penalized likelihood approach. Mol. Biol. Evol. 19:101-109.

Swofford, D. S. 1999. PAUP * 4.0. Phylogenetic analysis using parsimony (*and other
methods), v. 4b2. Sinauer Associates, Sunderland, MA.

Takezaki, N., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock
and linearized trees. Mol. Biol. Evol. 12:823-833.

Thorne, J. L., H. Kishino, and I. S. Painter. 1998. Estimating the rate of evolution of the
rate of evolution. Mol. Biol. Evol. 15:1647-1657.

Wray, G. A., J. S. Levinton, and L. H. Shapiro. 1996. Molecular evidence for deep
precambrian divergences among metazoan phyla. Science 274:568-573.

Yang, Z. 1996. Among-site rate variation and its impact on phylogenetic analyses.
Trends Ecol. Evol. 11:367-372.

37

38

Mathematical Appendix

This appendix describes the objective functions used by r8s to estimate divergence times
and rates. It also provides analytical expressions for the gradients of these functions,
which are used by some of the optimization algorithms to find solutions.

Label the n+1 nodes of a rooted, possibly non-binary tree, with {0,...,n}, where 0
represents the root node. Label each branch with the label of the node that it subtends. Let
t; be the time of node i, measure backward from the present; x; be the observed number of
substitutions on branch i (the branch “length”); A; be the rate of evolution on this branch.
Let &’ be the ancestor of node £, #* be the time of £’ and 7; = ¢,— t;” (the branch
“duration”). Let D(k) be the set of nodes descended from node £.

Note that this appendix ignores the fact that some nodes in a tree may be fixed or
constrained by the user—in fact, at least one node has to be! The changes to the equations
below are obvious.

Langley-Fitch (LF)

This is the simple implementation of a constant rate “molecular clock” model. The
objective function is the likelihood , which is calculated based on the assumption that the
“observed” number of substitutions on a branch follows a Poisson distribution.

L(Atgstsest, 1 Xppnx,) = | JAT)™ exp(-AT))/x,!

i=1

logL = E{—)ﬂ; + x,;log(AT)) - log(xl.!)}

i=1

The gradient includes derivatives with respect to the single rate and to all unknown node
times. The first is

dlogL 1 < c
5 "3 2h

where B is the sum of the branch lengths and 7 is the sum of the branch durations. The
gradient with respect to the times is more complicated and terms have to be included
depending on whether the node is a root, tip or some other internal node.

39

dlogL -x,

P + A {this term included whenever k not the root}
t, t.-t,

-t

+ E { il —)»}{this term included whenever & not a tip}

JED(k)

The reason this gets complicated is that in general there are terms from neighboring
branches that affect the derivative with respect to any one node time (because the
likelihood depends explicitly on durations, which involve a node and its immediate
ancestor or descendant node). Sometimes these neighboring branches are absent if the
node is a root or tip. These complications holds for all the objective functions.

Penalized likelihood (PL)

Penalized likelihood combines a likelihood term, which is a generalization of the
LF term above, with a penalty term that imposes a cost whenever the difference in rates
between neighboring branches is large.

d=logL-yn(A,....)

where L is the likelihood, 7 is a penalty function of the rates and v is a positive number

called the smoothing parameter that controls the relative importance of the penalty and
the likelihood.

The model for the likelihood term is a Poisson model, as with the LF approach,
but here every branch is allowed to have its own rate:

L(Ayseoos itgrtinsty 1 6p0n,) = [[T exp(=AT) /x,!

i=1

logL = Y {-AT; + x,log(A,T;) - log(x,)}

i=1

The penalty function is an important control on the degeneracy of the problem. If
it were absent there would be more parameters to estimate than there are data. When
present it effectively reduces the number of free parameters in the optimization. The
penalty function I adopt is basically a least squares penalty. Ignoring for a moment the
branches immediately descended from the root, the additive penalty function looks like

n

Agoy) = D (A= 2)’

k=1

40

but since we cannot compare the basal branches (the ones descended from the root) to
their ancestral branches, we penalize the variance of these basal rates. Thus, the total
penalty is:

A(see) = Var(A, :rEDO) + 3 (A - 2)

k&D(0)
where recall that D(0) are the immediate descendants of the root node.

The logarithmic penalty function just replaces rates with log rates:

(... A,) = Var(log A, :r € D(0)) + E(log A, —log)Lk‘)2

k&D(0)

Since log x — log y = log (x/y), this penalty function penalizes fractional changes in rate
rather than absolute changes in rate.

The gradient with respect to node times is quite similar to that for LF above,
except that the overall rate is replaced by the individual branch rates.

dlogL -x,
o, t.—t,

+ A, {this term included whenever & not the root}

+ E { Y A j}{this term included whenever k not a tip}

et Ik =1

The gradient with respect to rates is more complicated. It includes terms from both the

likelihood and the penalty portion of the objective function.

dlog® JlogL dm
o, o on

The first term is easy:

dlogL x
= k- (te = 1)
oA, A

For the second term we can use the following pseudo-code to show how it is calculated.
There are two different versions depending on whether the additive or logarithmic
penalty is used.

41

[Additive penalty]
For each interior node k

{

if (k’ == root)

{

A(seesl) = et Var(2, :r EDI)) + 3 (A, =4,) +..

JED(k)

Var(, :r € D(k')) = — EAjz—(l E)Lj)

Npy i€porey Ppwy jépiry

9 (k) = k=P S (7 - 2)

Or')bk nD(k‘) JED(k)

}

else (k’ != root)
{
if (k == tip)
{

Ty) = ot (A = 2,)
i) =2 = 2
o) =2 =

}
else (k != tip)

{
Aseed) = ot (B =2)+ S (A =2) +..

JED(K)

J
() =22 = A) =2 D (A)
0'))\7(JED(k)

}

42

[logarithmic penalty]
For each interior node k

{
if (k’ == root)
{
2
(A, h,) = ...+ Var(log A, : r € D(k")) + E(log)»j—log)»k) +
JED(k)
Var(logA, : 7 € D(k')) = E(log)») —(Elogk)
Moy jebi) Mpw) jepii)
logA, —(logA) _
5y R) 2
zZn)\’knD(k') t JED(K)
}
else (k’ != root)
{
if (k == tip)
{
2
A(Ayyees) = ot (A = A) " +
—Jt()\1 WA,)— 2 (log A, —log4,)
7 Y
}
else (k != tip)
{
2
Agdy) =t (A= 2) + D (A=) +
JED(k)
—Jr()\1 A)——(log)» ~logA,.)- 2z E(log)»j—log)nk)
zn)“k JED(K)
}
}

