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21.1  Species Niches and Their Reciprocal 
Spatial Distributions

A species’ niche consists of three components, and largely 
builds on Hutchinson’s quantification of a species’ niche as 
n‐dimensional space that reflects suitable values of n 
 biologically important and independent variables (e.g., tem-
perature and precipitation) (Hutchinson 1957; Colwell & 
Rangel 2009; Blonder et al. 2014). Hutchinson’s key innova-
tion was the separation of the physical distribution of a spe-
cies characterized by its geographical coordinates from the 
local values of n environmental conditions at a given time. 
The definition of a species’ niche by n  environmental attrib-
utes allows reciprocal projections between a species’ niche 
and its present, past and future geographical distributions. 
Importantly, Hutchinson’s niche expresses the effects of 
species interactions, but also the constraints of dispersal 
limitation (Colwell & Rangel 2009), known as a species’ 
realized niche. Building on Hutchinson’s niche concept, 

Soberón & Peterson (2005) developed the biotic, abiotic, 
movement (BAM) framework. The first and most impor-
tant component of a species’ niche is represented by the 
abiotic conditions within which a species population can 
establish and maintain itself, given its intrinsic physiologi-
cal limits (Hutchinson 1957; Boulangeat et al. 2012). The 
second component consists of dispersal or movement limi-
tations, which may prevent species from reaching sites 
with suitable abiotic conditions (e.g., a mountain range 
with suitable abiotic conditions separated by a vast lowland 
region, ocean, ocean strait or large river) (Bateman et al. 
2013; Vasudev et  al. 2015). The third component repre-
sents biotic interactions such as specific plant–pollinator 
interactions, the presence of pathogens or mutualistic rela-
tionships between plants and fungi or soil microbes. A spe-
cies is present where all three niche components overlap, in 
what is known as its “realized niche” (Soberón & Nakamura 
2009). It is from the realized niche that species presence 
records are collected, subsequently to be used in species 
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distribution models (SDMs). The extent to which the three 
niche components overlap is often unknown, and this is a 
caveat of SDMs that should be taken in consideration. 
Advances are being made towards including biotic interac-
tions (Boulangeat et al. 2012; Giannini et al. 2013; Thuiller 
et  al. 2015) and dispersal limitations (Engler et  al. 2012; 
Miller & Holloway 2015) in SDMs. The majority of SDM 
studies, however, estimate the spatial distribution of suita-
ble abiotic niche conditions based on a species’ realized 
niche. Despite this caveat, abiotic conditions, both at pre-
sent and historically, govern at least the broadest outlines of 
the distribution of species and biomes (Thomas 2010; 
Boucher‐Lalonde et al. 2016; Lee‐Yaw et al. 2016). SDMs 
have successfully been used to forecast the effects of cli-
mate change on species’ distributions (Thuiller et al. 2011), 
to identify historical refugia (Waltari et al. 2007) and map 
past distribution ranges (Raes et al. 2014), to predict the 
potential geographical ranges of invasive species 
(Broennimann et al. 2007) and to overcome (at least partly) 
the Wallacean shortfall (Hortal et al. 2015) or lack of knowl-
edge on geographical distributions of species (Vollering 
et  al. 2016), among many other applications (Araújo & 
Peterson 2012).

21.2  Species Presence Data

Without data on species occurrences from which to infer 
niche dimensions, it would be impossible to develop an 
SDM. These records are obtained from survey data and 
digitized herbarium and natural history museum speci-
mens, which represent verifiable presences. The largest 
data portal with collection records is arguably the Global 
Biodiversity Information Facility data portal (www.gbif.
org). For South America, the speciesLink data portal 
(www.splink.cria.org.br) is an additional source. Absence 
records are far more difficult to obtain, as “the absence of 
presence does not equal the presence of absence.” Some 
SDM algorithms use presence‐only data, while others 
require pseudo‐absences or a background sample as 
replacement for true absence records (see Table 21.1).

Given that most species are rare, the number of records 
that are available to model the distributions of many 
 species is limited. This poses a potential problem, as no 
relationship between species occurrence and abiotic con-
ditions can be inferred based on only a few records. Various 
authors have used the subjective number of five spatially 
unique records as the absolute minimum requirement 

Table 21.1 SDM algorithms. The most widely used are indicated with bold text.

SDM Description “Absence” data References

ANNs Artificial neural networks Pseudo‐absence Hilbert & Ostendorf (2001)
BIOCLIM Bioclimatic envelope – rectilinear Presence only Busby (1991)
BRTs Boosted regression trees Pseudo‐absence Elith et al. (2008)
CART Classification and regression trees Pseudo‐absence Breiman et al. (1984); De’ath & 

Fabricius (2000)
DOMAIN Proximity to presences in multidimensional 

predictor space measured by the Gower metric
Presence only Carpenter et al. (1993)

ENFA Ecological niche factor analysis Background sample Hirzel et al. (2002)
GARP Genetic algorithm for rule set prediction Pseudo‐absence Stockwell & Peters (1999)
GAMs Generalized additive models Pseudo‐absence Hastie & Tibshirani (1986); 

Yee & Mitchell (1991)
GBMs Generalized boosted models Pseudo‐absence Ridgeway (1999)
GDM Generalized dissimilarity modeling Pseudo‐absence Ferrier et al. (2007)
GLMs Generalized linear models Pseudo‐absence McCullagh & Nelder (1989); 

Venables & Ripley (2002)
HABITAT Bioclimatic envelope – convex hull Presence only Walker & Cocks (1991)
Mahalanobis 
distance

Multidimensional distance to the mean value 
for each predictor across presence localities

Presence only Rotenberry et al. (2006); 
Calenge et al. (2008)

MARS Multivariate adaptive regression splines Pseudo‐absence Elith & Leathwick (2007)
Maxent Maximum entropy Background sample Phillips et al. (2006)
MDA Mixture discriminant analysis Pseudo‐absence Hastie et al. (1994)
RFs Random forests Pseudo‐absence Breiman (2001)
SVMs Support vector machines Presence‐only Guo et al. (2005)

http://www.gbif.org
http://www.gbif.org
http://www.splink.cria.org.br
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(Pearson et al. 2007; Raes et al. 2014). A recent study has 
shown that the minimum required number of presence 
records depends on the prevalence, or proportional pres-
ence area, relative to the study region (van Proosdij et al. 
2016). Prevalence values should range between 0.1 and 0.9 
in order to obtain reliable results. Taking these considera-
tions into account, and using virtual species distributions 
with a stringent accuracy test, the results of van Proosdij 
et  al. (2016) indicate that at least 10 spatially unique 
 presence records are required to calibrate an SDM. 
Additionally, these authors provide a methodology to 
arrive at an accurate estimate of the minimum required 
number of presence records for a given study region.

Although the region under study might cover only part 
of a species’ range, it is important to include all available 
presence records for that species to calibrate an SDM, in 
order to avoid modeling partial or truncated niches (Raes 
2012; Hannemann et al. 2016). Partial niche models tend 
to underestimate the probability of occurrence at the edges 
of “niche space” covered by the artificially delimited study 
region, and to overestimate it at the centre (Raes 2012). 
Furthermore, caution should be taken when modeling the 
distribution of invasive species. Lack of biotic interactions 
(e.g., pathogens, predators) or niche shifts in the invaded 
range can lead to the inclusion of presence records with 
abiotic conditions that do not exist in the native range, and 
hence potentially result in overprediction of the native 
range (Broennimann et al. 2007).

Another issue of concern is taxonomic synonyms. 
Institutes that contribute data to the global data portals may 
not always use the same taxonomy, or they may file records 
under synonymous names. Synonyms can be resolved using 
the Taxonomic Name Resolution Service (TNRS) (Boyle 
et al. 2013), while the Encyclopedia of Life (www.eol.org) 
provides synonyms for a wide taxonomic range of organ-
isms. Moreover, specimens can also be stored under false 
taxonomic names as a result of misidentification (Goodwin 
et al. 2015), or as a result of belonging to as of yet unde-
scribed taxa (“the Linnean shortfall”) (Hortal et al. 2015).

Finally, geographical coordinates should be checked 
against specimen locality descriptions. Too often, latitu-
dinal and longitudinal coordinates are reversed or cen-
troid country coordinates are linked to specimens, 
among other potential sources of errors (Maldonado 
et al. 2015; Töpel et al. 2017).

21.3  Abiotic Spatial Data

21.3.1 Bioclimatic Variables

SDM algorithms are powerful tools that identify 
 correlations between species presence records and 
 abiotic  –  or, in fact, any spatially explicit  –  variables. 

Therefore, in order to obtain meaningful SDM results, it 
is important to select abiotic variables that relate to the 
ecological niche of the species. For the terrestrial realm, 
abiotic climatic conditions, such as temperature and 
precipitation, account for the majority of the spatial var-
iation in the probability‐of‐occurrence estimation of a 
species (Boucher‐Lalonde et  al. 2012, 2014; Lee‐Yaw 
et al. 2016). The widely used Bioclim data set consists 
of  19 bioclimatic variables derived from monthly 
 minimum and maximum temperatures and monthly 
precipitation data (Hijmans et al. 2005). Bioclimatic var-
iables represent biological limits such as “minimum 
temperature of the coldest month” or “precipitation of 
the driest quarter.” Bioclimatic data sets are available at 
different spatial resolutions, ranging between 0.5 degree 
(~3000 km2 at the equator) and 30 arc‐seconds (~1 km2), 
and can be downloaded from www.worldclim.org 
(Hijmans et al. 2005), www.climond.org (Kriticos et al. 
2012), www.ccafs‐climate.org and www.ecoclimate.org 
(Lima‐Ribeiro et al. 2015).

21.3.2 Altitude and Derived Variables

In addition to bioclimatic variables, altitude can be used 
as an abiotic variable. Altitude seems relevant when mod-
eling species distributions in montane regions. However, 
it is very often highly negatively correlated with the 
annual mean temperature, as temperature decreases with 
increasing altitude (Körner 2007). If the goal of an SDM is 
to predict the impact of future climate change on species 
distributions, or to project the model on to past climatic 
conditions, it is strongly advised not to use altitude as a 
variable: altitude is static, whereas global climate models 
(GCMs) predict increasing future temperatures, resulting 
in upslope range shifts of species.

Related to altitude is “topographic heterogeneity.” The 
NASA Shuttle Radar Topographic Mission (SRTM) has 
delivered a digital elevation model at 3 arc‐seconds, or 90 m 
spatial resolution, at the equator. When 90 m SRTM data 
are aggregated to resolutions between 1 km2 and 5 arc‐min-
utes (~9.3 × 9.3 km), the standard deviation (SD) around the 
mean is a measure of topographic heterogeneity. Altitudinal 
plains are represented by raster cells with low topographic 
heterogeneity values, and rugged mountainous terrains 
have high topographic heterogeneity values.

Additionally, slope and aspect can be derived from 
altitudinal data. Aspect describes the direction in which 
a slope faces, and relates to the degree of solar exposure. 
It should be noted that various other variables can be 
derived from altitudinal measurements and that the 
inclusion of topographic heterogeneity, slope and aspect 
variables in SDMs may be recommended instead of the 
inclusion of altitude.

http://www.eol.org
http://www.worldclim.org
http://www.climond.org
http://www.ccafs-climate.org
http://www.ecoclimate.org
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21.3.3 Quantitative Soil Property Variables

A third category of abiotic variables is made up of quan-
titative soil variables such as pH, water holding capacity 
and organic carbon content. These abiotic variables have 
recently become available through various portals, such 
as the Harmonized World Soil Database (HWSD) (FAO/
IIASA/ISRIC/ISSCAS/JRC 2012), SoilGrids1km (Hengl 
et al. 2014) and the European Soil DataBase (ESDB). The 
quantitative soil information is derived from interpolated 
US Food and Agricultural Organization (FAO) soil pro-
file data, and is also available as categorical variables.

SDM algorithms that use regression modeling transform 
categorical data into presence/absence dummy variables, 
with one dummy variable for each category in the data 
layer (Franklin 2009). Thus, for regression models, the use 
of categorical variables may be unwanted  –  especially 
when many environmental variables are used and few spe-
cies presence records are available, which may result in 
overfitted SDMs. Decision‐tree algorithms may be a better 
option when handling categorical variables.

21.3.4 Land‐Cover Data and Satellite Imagery

Land‐cover data and satellite imagery with global cover-
age can be useful, but should be used with caution. Most 
land‐cover data are interpretations of satellite images 
and/or aerial photos. The earliest satellite images, from 
Landsat 1, were taken in 1973, but many species collec-
tion records predate that year; a specimen collected in 
1960 can easily be associated with agricultural land 
based on satellite imagery postdating 1973. Furthermore, 
while land cover, the Normalized Difference Vegetation 
Index (NDVI) and the Enhanced Vegetation Index (EVI) 
data may be useful for modeling animal distributions, we 
advise against the use of these sources for plant distribu-
tions, as this can be classified as circular reasoning. 
Furthermore, when the intention is to predict future (or 
past) species distributions under different climate change 
scenarios, it should be kept in mind that no future land‐
cover, NDVI or EVI data are readily available, although 
advances are being made (Martinuzzi et al. 2015). Land‐
cover data are useful, however, for correcting the pre-
dicted distributions of species for remaining natural 
vegetation cover by removing all areas classified as 
“urban” and “agricultural land” from the predicted distri-
bution range.

21.3.5 Selecting Uncorrelated Abiotic Variables

Most SDM algorithms require uncorrelated predictor 
variables, in order to avoid problems with collinearity 
(Dormann et al. 2013). Once ecologically relevant predic-
tors are identified, these can be tested for correlations 

with a Pearson’s r‐correlation test, or with a Spearman’s 
rank correlation test in the case of non‐normally distrib-
uted variables. As a rule of thumb, Pearson’s |r| > 0.7 or 
Spearman’s |rho| > 0.7 is an appropriate indicator for 
when collinearity begins to severely distort model estima-
tions and subsequent predictions (Dormann et al. 2013).

Another measure of variable correlation or collinearity 
is the Variance Inflation Factor (VIF). A VIF value of >10 
is often used to indicate high collinearity (O’brien 2007). 
From sets of correlated variables, the one with the high-
est ecological relevance should be kept to develop the 
SDM. Once all correlated predictors are removed, the 
correlation table should not have values above 0.7, or VIF 
values should not exceed 10.

21.3.6 Future and Past Bioclimatic Data

When the aim is to predict the impacts of future cli-
mate change on the distributions of species, data from 
global climate/circulation models (GCMs) are required. 
The latest report from the Intergovernmental Panel on 
Climate Change (IPCC) uses four different scenarios 
for global development, known as representative con-
centration pathways (RCPs), which lead to increased 
global average temperatures of between 2 and 4 °C 
(IPCC 2013). At local scales, the predicted increase in 
temperature can be much higher or lower, however. No 
fewer than 61 different GCMs, developed by 20 differ-
ent institutes, have contributed to the latest IPCC‐AR5 
report (IPCC 2013). Details of the different GCMs can 
be found in the Climate Model Intercomparison 
Project – phase 5 (CMIP5) portal (Taylor et al. 2012). 
Given the complexity of GCMs, the spatial resolutions 
of the data are coarse, typically ranging between 1.0 
and 2.75°.

To predict the future distributions of species, data 
from GCMs need to be downscaled to the desired spatial 
resolution. Two different methods are widely used: the 
Delta method (GCM portal) and the bias‐corrected 
method (www.worldclim.org). The Delta method calcu-
lates the difference (anomaly) between predicted future 
values and recorded present values at the coarse spatial 
resolution of the GCM. These anomalies are then inter-
polated to the desired high spatial resolution used for 
modeling. Finally, the interpolated values are added to 
the present high‐resolution values in order to maintain 
the high‐resolution climate differences related to, for 
example, topographic differences. The bias‐corrected 
method calculates the difference between the predicted 
future GCM values and the predicted present GCM val-
ues at the coarse resolution of the GCM. Not all GCMs 
correctly predict present values as derived from weather 
stations. The anomalies between predicted present and 
predicted future values are then interpolated to the 

http://www.worldclim.org
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desired spatial resolution and added to the present data, 
which are interpolated from weather stations. This pro-
cedure corrects for biases in GCM predictions concern-
ing present climatic conditions.

It might be equally interesting to assess past distribu-
tions of species; for example, to identify glacial refugia 
(Waltari et  al. 2007) or to predict the vegetation types 
that covered exposed sea beds during glacial periods 
(Raes et al. 2014). Varela et al. (2015) provide a detailed 
summary of the available paleoclimatic data.

21.4  Species Distribution Models

The applications of SDMs are twofold. They can be used 
(i) to predict habitat suitability for areas where species 
collection records are lacking (Wallacean shortfall) and 
(ii) to describe a species’ ecology based on its occurrence 
records and the abiotic conditions at those localities. 
SDMs combine data from species presence/absence 
records  –  taxonomically synonymized and georefer-
enced  –  with a selection of ecologically relevant and 
uncorrelated predictor variables (see Figure 21.1).

Over the past 2 decades, many different algorithms 
have been developed, compared and scrutinized in com-
parative tests (Elith et al. 2006; Aguirre‐Gutiérrez et al. 
2013; Qiao et al. 2015). Three main classes of modeling 
algorithms can be distinguished based on their require-
ments with respect to absence records (Table 21.1). The 
first class requires presence records only. The second 
requires absences, or pseudo‐absences if true absences 
are lacking. Pseudo‐absences are randomly drawn 
absences from the study area, taken from any locality 
where no presence was recorded. The third class do not 
require any absence data, but use a background sample 
defined as randomly drawn localities from the entire study 
area, including presence localities. Depending on the 
SDM algorithm, the “distributions” are either assumed to 
be parametric (normal, binomial, Poisson distribution) 
or are more relaxed in their assumptions (semi‐paramet-
ric or nonparametric). We do not intend to be exhaustive 
here, nor to provide detailed descriptions of the different 
SDM algorithms. For that purpose, we refer to the text-
books of Franklin (2009), Peterson et  al. (2011) and 
Guisan et al. (2017) and the references in Table  21.1. 
Presently, Maxent, GLM and GAM are the most widely 
used algorithms (Merow et al. 2013; Qiao et al. 2015).

Several of the SDM algorithms listed in Table 21.1 are 
implemented in applications (software) with a graphical 
user interface (GUI), notably Maxent. Most of them can 
be operated directly through R (R Development Core 
Team 2014). Several R‐libraries have been developed 
especially for species distribution modeling, including 
“dismo” (Hijmans et al. 2015), “biomod2” (Thuiller et al. 

2014) and “SSDM” (Schmitt et al. 2016). The R‐vignette 
(manual) “Species Distribution Modeling with R” 
(Hijmans & Elith 2016) is highly recommended and cov-
ers the entire modeling process for various algorithms 
using the R framework.

21.4.1 Measures of SDM Accuracy 
and the Null‐Model Test

Testing the accuracy of SDMs is challenging because 
independent test data are generally lacking. As a solu-
tion, presence records are often partitioned into a train-
ing and a testing data set. Either single partitions, 
multiple random partitions or k‐fold partitions are used 
(e.g., 75% for training and 25% for testing) to develop 
SDMs and assess their predictive power on the test 
data. When the number of presence records is small, a 
jackknife (or “leave‐one‐out”) procedure can be used 
(Pearson et al. 2007). For each run, one record is left out 
of the training data set and is used to measure the pre-
dictive accuracy. Both k‐fold partitioning and the jack-
knife procedure result in a distribution of accuracy 
values that can be interpreted as the sensitivity of the 
SDM to different partitions of the data.

Most measures of SDM accuracy depend on a binary 
confusion matrix (Fielding & Bell 1997). A confusion 
matrix is a 2 × 2 contingency table that captures (i) the 
number of presences correctly predicted as present 
(“sensitivity”), (ii) the number of absences falsely pre-
dicted as present (“false positives” or “commission 
error”), (iii) the number of presences falsely predicted as 
absent (“false negatives” or “omission error”) and (iv) the 
number of absences correctly predicted as absent (“spec-
ificity”). To calculate the different fractions of the confu-
sion matrix, the continuous SDM output should first be 
converted into a discrete presence/absence prediction 
based on a threshold value. For an overview of different 
threshold rules, we refer to the work of Liu et al. (2013). 
We advocate the use of the “10 percentile training pres-
ence threshold.” This is a conservative threshold that 
excludes 10% of the presence records with the lowest 
probability of occurrence from the predicted presence 
range and does not rely on absences (which are replaced 
by pseudo‐absences). This threshold accounts for taxo-
nomic misidentifications and georeferencing errors.

From the available threshold‐dependent measures of 
SDM accuracy, Cohen’s kappa statistic and true skill sta-
tistic (TSS) are widely used (Allouche et  al. 2006). 
Arguably the most widespread, and one of the few 
threshold independent measures of SDM accuracy, is the 
area under the curve (AUC) of the receiver operating 
characteristic (ROC) plot (Hanley & McNeil 1982). The 
major advantage of the AUC value, in addition to its 
threshold independence, is that it is relatively insensitive 
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to prevalence (McPherson et al. 2004). The AUC value is 
a measure of the area under the curve of sensitivity (pro-
portion of correctly predicted presences) plotted against 
1‐specificity (proportion of correctly predicted absences) 
for the range of all possible thresholds, and hence is 
threshold‐independent. The AUC value is interpreted as 
the chance that a randomly drawn presence record has a 

higher predicted probability of occurrence value than a 
randomly drawn absence. For SDMs developed with 
presence and absence data, AUC values >0.7 are gener-
ally accepted as useful models, and an AUC value of 1 
indicates perfect model fit (Swets et al. 2000).

A major drawback of all measures of SDM accuracy is 
that they rely on true absences, which are lacking in most 
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Figure 21.1 Species distribution model (SDM) workflow for Vaccinium phillyreoides occurring on Borneo. Collection records (dots) and 
uncorrelated spatial predictors of present conditions are used to create three different SDMs using different algorithms (Table 21.1); white 
indicates high probability of occurrence. An ensemble (mean) of the three SDMs shows where the models agree and mapping of the coefficient 
of variation identifies areas where predictions are least consistent (dark gray). The SDMs are then projected to future climatic conditions (here, 
scenario RCP8.5, the most pessimistic climate change scenario, where greenhouse gas emissions continue increasing after the year 2100), 
resulting in three individual future projections. These are assembled in an ensemble mean forecast. The lower left corner shows a response 
curve of probability of occurrence decreasing with increasing Soil pH. See also Plate 34 in color plate section.
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cases and are replaced by pseudo‐absences or a back-
ground sample. Under such conditions, part of the pseudo‐
absences or background samples are randomly drawn 
from the species presence area proportional to the spe-
cies’ true presence distribution (prevalence). The maxi-
mum AUC value under these conditions is not 1, but 
1 − a/2, where a stands in for the species’ true prevalence, 
which is typically not known (Phillips et al. 2006; Raes & 
ter Steege 2007). For example, for a species with a preva-
lence of 0.4, the maximum AUC value is 0.8 (1 − 0.4/2). 
Therefore, measures of SDM accuracy that rely on stand-
ard threshold values (e.g., AUC > 0.7) that are calculated 
using pseudo‐absences or a background sample instead 
of true absences are flawed. It should be noted, however, 
that when the aim is to compare the performance of dif-
ferent SDM algorithms on the same input data, the SDM 
with the highest AUC value is the most accurate.

Recognition of this caveat led Raes and ter Steege 
(2007) to develop a null‐model that tests whether SDM 
accuracy values significantly deviate from random 
expectation. The procedure is straightforward, and uses 
a random sample of pseudo‐presence records from the 
study area with the same number of records as was used 
for the real SDM. This is replicated 999 times. These 999 
random sets of pseudo‐presence records are modeled in 
a similar way as the real species, using the same SDM 
algorithm and abiotic spatial data. The 999 measures of 
SDM accuracy, plus the one measure of accuracy for the 
real species, are subsequently ranked from high to low. 
If the real species’ measure of SDM accuracy ranks 
among the top 5%, then the chance that a random set of 
presence points can produce an equally good model is 
less than 5%; hence, significantly better than random 
expectation. The test can be further improved by draw-
ing the pseudo‐presence records from a target group 
background sample (Phillips et  al. 2009). The target 
group background sample represents all presence 
records in the study area from species of the same group 
(e.g., same genus) to which the species being modeled 
belongs. This procedure also corrects for collection 
biases (Phillips et al. 2009).

21.4.2 SDM Complexity

Many of the SDM algorithms listed in Table 21.1 can fit 
very complex relationships between species presence 
records and spatial predictors. Complex SDMs often 
have very high model accuracy values but limited predic-
tive power, as a result of model overparameterization or 
overfitting (Merow et al. 2014). Model overparameteri-
zation refers to the inclusion of too many predictor vari-
ables relative to the number of presences (and absences), 
or the inclusion of predictors that do not relate to the 
ecology of the study species. An overfit SDM is fitted to 
noise in the presence data, and fails to capture the 
 species’ response to environmental gradients. Ecological 
niche theory suggests that species’ response curves 
are  (at least for fundamental niches) often unimodal 
(Dolédec et  al. 2000; Austin 2005, 2007), and hence 
quadratic responses to environmental gradients may be 
most appropriate (Figure  21.2) (Merow et  al. 2013). 
When only part of a unimodal response is captured by 
the study area, a linear response might be sufficient. 
Threshold responses are appealing when physiological 
tolerance limits exist, such as a freezing intolerance 
resulting in predicted presence for areas where the 
 temperature in the coldest month is above 0 °C. Any 
other modeling rules should only be included based on 
ecologically motivated reasoning.

21.4.3 Ensemble Models

Different SDM algorithms (Table 21.1), given their statis-
tical assumptions and ways to handle absence data, result 
in different outputs from the same input data (Figure 21.1). 
The variation in output can occur not only when compar-
ing different SDM algorithms, but also when comparing 
models from a single algorithm across multiple cross‐val-
idation runs and with different model parameterization. 
The between and within modeling variability in SDM 
outputs has been widely documented (Araújo & New 
2007; Elith & Graham 2009), and has led to the develop-
ment of ensemble models (EMs). EMs are rooted in the 
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Figure 21.2 A linear (light gray) and a unimodal or 
quadratic response curve (dark gray), covering the 
present and future/past non‐analog range of values 
(abiotic conditions that are not present in the model 
training data) of an ecological gradient. Dotted lines 
represent extrapolation to non‐analog future/past 
conditions. Horizontal lines represent the clamped 
values (future probability values are set constant at 
the value of the present range edge). The vertical 
line represents no extrapolation and the edge of the 
present range of values.
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general idea described by Bates and Granger (1969) that, 
“Given that unknown conditions cannot be exactly pre-
dicted, then an ensemble of predictions may render a 
smaller error than any single prediction.” Ensemble mod-
eling can be summarized as a technique that captures the 
uncertainty in model predictions generated by different 
SDM algorithms, multiple cross‐validation runs or differ-
ent model parameterizations using a single SDM algo-
rithm. Moreover, EMs may also render more consistent 
predictions when projecting models from different SDM 
algorithms to future climate scenarios.

A growing number of studies have compared the out-
puts of single SDMs against an EM. Aguirre‐Gutiérrez 
et  al. (2013) showed that EMs were among the best 
 performing models, consistent across spatial scales, for 
different prevalence classes (i.e., widely to narrowly 
 distributed species) and for rare to common species. 
Buisson et al. (2010) showed, using EMs of fish distribu-
tions in France, that most of the variation in future cli-
mate projections could be attributed to different SDM 
algorithms, followed by differences in GCMs. Similar 
conclusions were drawn by Diniz‐Filho et  al. (2009) 
for  projections of bird SDMs onto future climate 
 projections in South America. Next to differences in the 
outputs of different SDM algorithms and projections to 
different global climate change scenarios, differences in 
ensemble rules also yield different EM outputs.

Currently, the R‐libraries “biomod2” (Thuiller et  al. 
2014), “BiodiversityR” (Kindt & Coe 2005) and “SSDM” 
(Schmitt et  al. 2016) facilitate a semi‐automated con-
struction of EMs. First, individual SDMs using different 
algorithms are constructed and tested for their predic-
tive power: only SDMs above a predefined threshold 
may  be retained. Second, the ensemble rule should be 
selected. Among the choices are the mean, median and 
weighted mean. The latter applies a weight to the differ-
ent SDMs according to the results of individual model 
evaluations. In this way, better performing SDMs drive 
the outcome of the final EM. Although it is tempting to 
present only the final projected EM, this output should 
be accompanied by a representation of the measure of 
uncertainty (Thuiller 2014). The uncertainty measure 
can be obtained by computing, for example, the coeffi-
cient of variation of single SDM predictions used to con-
struct the EM (Figure 21.1). The measure of uncertainty 
indicates where single SDMs differ in their predictions.

21.4.4 The Ecology of Species as Derived 
from SDMs

Not all selected and uncorrelated abiotic variables con-
tribute equally to an SDM. Often, just two or three vari-
ables largely determine the ecology of a species 
(Aguirre‐Gutiérrez et  al. 2015). Several methods have 

been developed to estimate the importance of each envi-
ronmental variable to the final SDM. The first is a rand-
omization procedure where the values of the variable 
under investigation are randomly permutated. 
Subsequently, the Pearson correlation between the pre-
dictions of the original SDM and the SDM with one per-
mutated variable is determined. If the correlation is high 
(i.e., little difference between the two predictions), the 
permutated variable is considered unimportant for the 
SDM (Thuiller et  al. 2009). This procedure is imple-
mented in the R‐library “biomod2” and can be used for 
all SDM algorithms (Thuiller et al. 2014). Maxent offers 
a similar permutation methodology, but here the relative 
drop in AUC value is used to determine the importance 
of the permutated variable (Phillips et al. 2006). Another 
method is a jackknife, or leave‐one‐out, analysis. Each 
environmental variable is left out of the SDM, and the 
relative drop in predictive power can be used as a meas-
ure of the variable’s importance. Alternatively, an SDM 
can be fitted on a single environmental variable, and the 
predictive power can be used as a performance indicator 
for this variable alone.

Once the variables that determine a species’ distribu-
tion are identified, the responses to these environmental 
gradients can be analyzed. For that purpose, Elith et al. 
(2005) developed the “evaluation strip,” which allows the 
user to plot the response curves of an SDM to a single 
environmental gradient. The evaluation strip consists of 
generated environmental data, where the range of values 
of each variable in turn is systematically varied over its 
range, while all other variables are held constant at their 
mean (or minimum or maximum). Plotting of the pre-
dicted probability of occurrence values on the evaluation 
strip (response curves) shows how the model responds 
to increasing values of each variable independently 
(Figures 21.1 and 21.2). The evaluation strip is included 
in Maxent and in the R‐library “biomod2” (Thuiller et al. 
2014). Maxent has one additional type of response curve 
that is based on the predicted probability of occurrence 
of an SDM developed with a single environmental 
 predictor, which can be readily plotted.

21.5  Projecting SDMs in Time 
and Space

When the aim of an SDM is to predict the impact of 
future climate change on species distributions (time), or 
to assess the invasive potential of a species in a certain 
area (space), the created SDM is projected to the future 
abiotic (often climatic) conditions, or to the new area of 
interest. In both situations, the data sets can include 
 abiotic conditions that are not present in the training 
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data set, known as “novel” or “non‐analog” conditions 
(Figure  21.2) (Williams & Jackson 2007). Projection of 
SDMs to novel conditions requires extrapolation of the 
species’ responses along ecological gradients. This is 
especially troublesome if this involves linear responses 
(e.g., if the probability of occurrence increases with 
increasing temperature, in which case extrapolation 
results in continuous increasing probabilities beyond the 
present range of temperatures) (Figure 21.2).

Multivariate environmental similarity surfaces (MESS) 
measure the similarity of any given point to a reference 
set of points, and allow an analysis of the extent to which 
future values exceed the present range of values (Elith 
et  al. 2010). Negative values indicate the maximum 
extension of the present range of values, expressed as a 
percentage; for example, if present temperatures range 
from 10–20 °C and the future value at a locality is 25 °C, 
then the MESS value is (20 − 25)/(20 − 10) × 100 = −50. A 
future temperature of 5 °C results in the same negative 
MESS value. Future values within the present range have 
MESS values between 0 and 100. The most negative 
MESS value across all environmental variables reported 
for each locality is plotted, resulting in a MESS map. 
Predicted SDM probabilities of occurrence in areas with 
highly negative MESS values should be treated with cau-
tion. The MESS analysis is implemented in Maxent and 
in the R‐library “dismo” (Hijmans et al. 2015).

Several SDM algorithms allow regulation of the 
degree of extrapolation to non‐analog future values. 
The first option is not to extrapolate, effectively enforc-
ing a value for the probability of occurrence of 0 at 
localities with future values exceeding the present range 
of values (vertical line in Figure 21.2). A second option 
is to “clamp” the probability of occurrence values 
beyond the present range of values. This sets the future 
probability values constant at the value of the present 
range edge (horizontal lines in Figure 21.2). The third 

option is to extrapolate the probability values to non‐
analog conditions (dashed lines in Figure 21.2).

A final word is dedicated to the dispersal capacity of 
species to track suitable future abiotic conditions. If a spe-
cies is a poor disperser, it may not be able to migrate fast 
enough to keep up with shifting environmental condi-
tions. The R‐library “MigClim” (Engler et al. 2012) allows 
the user to integrate dispersal constraints on future SDM 
projections. Key to the calibration, however, is to select a 
realistic dispersal kernel (a probability density function of 
distance of dispersal), which is difficult because the kernel 
shape is determined by many variables. Furthermore, it is 
hard to include rare long‐distance dispersal events. 
Therefore, most future SDM projections use either no 
dispersal, full dispersal or both.

21.6  Conclusion

SDMs are powerful statistical models that relate species 
presences to climatic and landscape features in order to 
predict their distributions and the potential impacts of 
future and past climatic conditions. We would like to 
stress that ecological knowledge cannot be disregarded 
and should be taken into account when selecting the pre-
dictors used to model species distributions. A model is 
only as good as the data used to train it. Although SDM 
outputs often look beautiful, it is of utmost importance 
to determine whether they reflect reality.
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