SDM Practical

SDM Pratical overview:

SDM – Design your experiment

- <u>Think before starting</u>!
 - What do you want to know about the species?
 - How do you verify that?
- <u>Set an hypothesis</u>:
 - E.g. Climate change will decrease the area available for species X
 - Thus: HO: There is no change in the suitable area of species X HA: There is a decrease of the suitable area of species X
- <u>Draft the steps</u> to test said hypothesis:

Goto: <u>https://www.gbif.org/</u>

On the options on the left, make sure to only select occurrences with geographic information (and perhaps only human observation)

Does it have synonyms? <u>https://resolver.globalnames.org/</u> 27 synonyms for this bat species

Global Names resolution tools and services

Resolve lists of scientific names against known sources. This service parses incoming names, executes exact or fuzzy matching as required, and displays a confidence score for each match along with its identifier.

Paste Scientific Names, one on each

Rhinolophys euryale

on each	Bequito	
	Results	JSON XML
	Rhinolophys euryale	Number of matches: 27

- CSV comma separated variables
 - Comma's have different meanings:
 - EU (in general): Comma is a decimal separator
 - USA: point is the decimal separator
 - Also tab delimited (decimal can change here)
- R can read all types
- Correcting from csv1 to csv2
 - Open in notepad
 - Substitute , for ;
 - Substitute . for ,
- There are other methods (check the manual)

🥅 Rhinolophus_	euryale_csv0 - Blo	oco de notas 🛛 —		🔲 Rhinolophus_	euryale_csv1 - Bloco de nota	as	🗐 Rhinolophus	_euryale_csv2 - Bl	oco de notas
Ficheiro Editar	Formatar Ver	Ajuda		Ficheiro Editar	Formatar Ver Ajuda		Ficheiro Editar	Formatar Ver	Ajuda
"species"	"longitu	ude" "latitu	de"	"species","lo	ongitude","latitude	e"	species;long	gitude;latit	ude
"Rhinolophus	euryale"	10.261719	51.193676	"Rhinolophus	euryale",10.261719	9,51.193676	Rhinolophus	euryale;10,	261719;51,193676
"Rhinolophus	euryale"	5.566667	50.633333	"Rhinolophus	euryale",5.566667,	,50.633333	Rhinolophus	euryale;5,5	66667;50,633333
"Rhinolophus	euryale"	5.566667	50.633333	"Rhinolophus	euryale",5.566667,	,50.633333	Rhinolophus	euryale;5,5	66667;50,633333
"Rhinolophus	euryale"	20.167 48.617		"Rhinolophus	euryale",20.167,48	3.617	Rhinolophus	euryale;20,	167;48,617
"Rhinolophus	euryale"	20.75 48.5166	66	"Rhinolophus	euryale",20.75,48.	.516666	Rhinolophus	euryale;20,	75;48,516666
"Rhinolophus	euryale"	20.887191	48.495193	"Rhinolophus	euryale",20.887191	1,48.495193	Rhinolophus	euryale;20,	887191;48,495193
"Rhinolophus	euryale"	20.506927	48.467712	"Rhinolophus	euryale",20.506927	7,48.467712	Rhinolophus	euryale;20,	506927;48,467712
"Rhinolophus	euryale"	20.542033	48.460844	"Rhinolophus	euryale",20.542033	3,48.460844	Rhinolophus	euryale;20,	542033;48,460844
"Rhinolophus	euryale"	20.542033	48.460844	"Rhinolophus	euryale",20.542033	3,48.460844	Rhinolophus	euryale;20,	542033;48,460844
"Rhinolophus	euryale"	20.542033	48.460844	"Rhinolophus	euryale",20.542033	3,48.460844	Rhinolophus	euryale;20,	542033;48,460844
"Rhinolophus	euryale"	20.542033	48.460844	"Rhinolophus	euryale",20.542033	3,48.460844	Rhinolophus	euryale;20,	542033;48,460844
"Rhinolophus	euryale"	20.542033	48.460844	"Rhinolophus	euryale",20.542033	3,48.460844	Rhinolophus	euryale;20,	542033;48,460844
"Rhinolophus	euryale"	20.542033	48.460844	"Rhinolophus	euryale",20.542033	3,48.460844	Rhinolophus	euryale;20,	542033;48,460844
"Rhinolophus	euryale"	-0.29907	48.20928	"Rhinolophus	euryale",-0.29907,	,48.20928	Rhinolophus	euryale;-0,	29907;48,20928
"Rhinolophus	euryale"	-0.29907	48.20928	"Rhinolophus	euryale",-0.29907,	,48.20928	Rhinolophus	euryale;-0,	29907;48,20928
"Rhinolophus	euryale"	-0.29907	48.20928	"Rhinolophus	euryale",-0.29907,	,48.20928	Rhinolophus	euryale;-0,	29907;48,20928
"Rhinolophus	euryale"	16.917221	48.133888	"Rhinolophus	euryale",16.917221	1,48.133888	Rhinolophus	euryale;16,	917221;48,133888
"Rhinolophus	euryale"	20.749859	48.056655	"Rhinolophus	euryale",20.749859	9,48.056655	Rhinolophus	euryale;20,	749859;48,056655
"Rhinolophus	euryale"	20.749859	48.056655	"Rhinolophus	euryale",20.749859	9,48.056655	Rhinolophus	euryale;20,	749859;48,056655

ArcGIS, R, excel, etc, each of them might recognize numbers different so keep all files

- Maxent expects the data in CSV
 - Species name; longitude; latitude
 - MAKE SURE YOU HAVE ONE NAME PER SPECIES
 - When you download from GBIF, it usually brings multiple names
 - Yes, you can have multiple species in one file
 - Yes you can have multiple subsets of the same species in one file: e.g. amanita1, amanita2
 - They will all be modelled independently
- IMPORTANT STEP:
 - Load your CSV into a GIS and explore your #

	A	В	С	
1	species	longitude	latitude	
2	Rhinoloph	10,26172	51,19368	
3	Rhinoloph	5,566667	50,63333	
4	Rhinoloph	5,566667	50,63333	
5	Rhinoloph	20,167	48,617	
6	Rhinoloph	20,75	48,51667	
7	Rhinoloph	20,88719	48,49519	
8	Rhinoloph	20,50693	48,46771	
9	Rhinoloph	20,54203	48,46084	
10	Rhinoloph	20,54203	48,46084	
11	Rhinoloph	20,54203	48,46084	
12	Rhinoloph	20,54203	48,46084	
13	Rhinoloph	20,54203	48,46084	
14	Rhinoloph	20,54203	48,46084	
·				

In a GIS you can easily clean the obvious errors

- Further explore if the data "makes sense"
- When satisfied, export back to csv (check GIS notes)

Hum...

Different sampling strategies

Floating mushrooms

- Goto: <u>https://www.worldclim.org/</u>
 - Worldclim version 2: 1970~2000
 - Tif format (more GIS friendly)
 - Only "Present"
 - Worldclim version 1.4: 1960~1990
 - Bil format
 - Also a section for Future and Current
 - You can use either worldclim version but future scenarions are only possible on the previous version
 - Next:
 - Variable description
 - Coordinate system and resolution

WorldClim

WorldClim is a set of global climate layers (gridded climate data) with a spatial resolution of about 1 $\rm km^2$. These data can be used for mapping and spatial modeling.

The new Version 2.0 is now available (current climate only --- more coming soon)

The old version is **Version 1.4**. For this version you can get data for past, current and future climates.

Read more

You can also directly download in R:

Example @ https://www.gis-blog.com/r-raster-data-acquisition/

Main product of Wordclim dataset

• Monthly means of each of these estimates

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
minimum temperature (°C)	tmin 10m	tmin 5m	tmin 2.5m	tmin 30s
maximum temperature (°C)	tmax 10m	tmax 5m	tmax 2.5m	tmax 30s
average temperature (°C)	tavg 10m	tavg 5m	tavg 2.5m	tavg 30s
precipitation (mm)	prec 10m	prec 5m	prec 2.5m	prec 30s
solar radiation (kJ m ⁻² day ⁻¹)	srad 10m	srad 5m	srad 2.5m	srad 30s
wind speed (m s ⁻¹)	wind 10m	wind 5m	wind 2.5m	wind 30s
water vapor pressure (kPa)	vapr 10m	vapr 5m	vapr 2.5m	vapr 30 s

Coordinate system: World Geodetic System 84(WGS84)

These are secondary products that "sumarize" the main products

variable	10 minutes	5 minutes	2.5 minutes	30 seconds	
Bioclimatic variables	bio 10m	bio 5m	bio 2.5m	bio 30s	

BIO1 = Annual Mean Temperature BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) BIO3 = Isothermality (BIO2/BIO7) (* 100) BIO4 = Temperature Seasonality (standard deviation *100) BIO5 = Max Temperature of Warmest Month BIO6 = Min Temperature of Coldest Month BIO7 = Temperature Annual Range (BIO5-BIO6) BIO8 = Mean Temperature of Wettest Quarter BIO9 = Mean Temperature of Driest Quarter BIO10 = Mean Temperature of Warmest Quarter BIO11 = Mean Temperature of Coldest Quarter BIO12 = Annual Precipitation BIO13 = Precipitation of Wettest Month BIO14 = Precipitation of Driest Month BIO15 = Precipitation Seasonality (Coefficient of Variation) BIO16 = Precipitation of Wettest Quarter BIO17 = Precipitation of Driest Quarter BIO18 = Precipitation of Warmest Quarter BIO19 = Precipitation of Coldest Quarter

Resolution at the equator!

Conversion to m explained in: <u>https://en.wikipedia.org/wiki/Decimal_degrees</u> X (m) = 30(s) * Perimeter@equator/360(°) = 927.66m @ equator AKA 1km layer Download the 5 minute layer! (10km @ equator)

2050					
GCM	code	гср26	гср45	гср60	гср85
ACCESS1-0 (#)	AC		tn, tx, pr, bi		tn, tx, pr, bi
BCC-CSM1-1	BC	tn, tx, pr, bi			
CCSM4	CC	tn, tx, pr, bi			
CESM1-CAM5-1-FV2	CE		tn, tx, pr, bi		
CNRM-CM5 (#)	CN	tn, tx, pr, bi	tn, tx, pr, bi		tn, tx, pr, bi
GFDL-CM3	GF	tn, tx, pr, bi	tn, tx, pr, bi		tn, tx, pr, bi
GFDL-ESM2G	GD	tn, tx, pr, bi	tn, tx, pr, bi	tn, tx, pr, bi	
GISS-E2-R	GS	tn, tx, pr, bi			
HadGEM2-AO	HD	tn, tx, pr, bi			
Haddewiz SC	HG		tn, tx, pr, bi		tn, tx, pr, bi
HadGEM2-ES	HE	tn, tx, pr, bi			
INMCM4	IN		tn, tx, pr, bi		tn, tx, pr, bi
IPSL-CM5A-LR	IP	tn, tx, pr, bi			
MIROC-ESM-CHEM (#)	MI	tn, tx, pr, bi			
MIROC-ESM (#)	MR	tn, tx, pr, bi			
MIROC5 (#)	MC	tn, tx, pr, bi			
MPI-ESM-LR	MP	tn, tx, pr, bi	tn, tx, pr, bi		tn, tx, pr, bi
MRI-CGCM3	MG	tn, tx, pr, bi			
NorESM1-M	NO	tn, tx, pr, bi			

0050

Year the scenario represents

Greenhouse gas scenarios: four representative concentration pathways (RCPs) Time periods: 2050 (average for 2041-2060) and 2070 (average for 2061-2080) Variables:

tn - monthly average minimum temperature (degrees C * 10) tx - monthly average maximum temperature (degrees C * 10) pr - monthly total precipitation (mm) bi - 'bioclimatic' variables

Download the data corresponding to the scenarios you want to test

Notice: you must use the same variables for present and forecasting

- Be organized!
 - Think of folders as a "database"
 - If you use R script: 00 SettingUpWorkEnvironment.R you will get an environment like mine
- Unzip each .zip file to the appropriate folders
 - My case: Future data to Future folder, Present data to Present folder
- First step: subsetting the data to your Area of Interest
 - <u>Alternative 1: Clip your AOI based on the range of your presence data</u>
 - Alternative 2: Clip your AOI based on a polygon shapefile created in Arcmap
 - Alternative 3: Create your own extent
- You should train your model in an AOI and then predict back to the entire planet
 - If you want to see the future in a specific AOI, you can also clip the future layers
 - We show that on the tutorial but it's optional

- Overall procedure:
 - 1. Load the entire group of rasters in the present
 - 2. Load an object (occurrence points or a shapefile) to crop the rasters to na AOI
 - 3. Select the variables of interest using an ecological criteria
 - 4. Test the selected data for Autocorrelation and VIF
 1. If >.7 or VIF >10, then you have to remove somethig
 - 5. Save all the data to a new folder in .asc format
 - 1. Maxent needs it!
 - 6. Start-up maxent, load the data, set the settings and run

The direction of the slash is significant!!!

Single \ - tells Rm next character is special Double: \\ - Tells R, next character is a backslash Forward: / - recognized as a backslash

For R you must use: \\ or / when using a folder path or you will have an error

```
Error: unexpected input in "\"
> setwd("C:\Practical\")
Error: '\P' is an unrecognized escape in character string starting ""C:\P"
> setwd("C:/Practical/")
> |
```

Originally: (Bio1, bio10 ... Bio 19, bio 2... bio9)

But we want: Bio1, bio2, Bio19

them

Now you repeat the same for the scenarios you want to use

```
#loading future variables is a bit more complicated due to the subfolders
27
    path.fut.26 <- list.files("./Future/he26bi50/",pattern=".tif",full.names = T)</pre>
28
    path.fut.45 <- list.files("./Future/he45bi50/",pattern=".tif",full.names = T)</pre>
29
    path.fut.60 <- list.files("./Future/he60bi50/",pattern=".tif",full.names = T)</pre>
30
    path.fut.85 <- list.files("./Future/he85bi50/",pattern=".tif",full.names = T)</pre>
31
32
33
    stk.fut.26 <- stack(path.fut.26)</pre>
    stk.fut.45 <- stack(path.fut.45)</pre>
34
35
    stk.fut.60 <- stack(path.fut.60)
    stk.fut.85 <- stack(path.fut.85)</pre>
36
37
    #checks the order of the layers loaded and renames them to bioXX, each XX repr
38
    #a bioclimatic laver
39
    names(stk.present)
40
    names(stk.present) <- c("Bio01","Bio02","Bio03","Bio04",</pre>
41
42
                              "Bio05", "Bio06", "Bio07", "Bio08",
43
                              "Bio09", "Bio10", "Bio11", "Bio12",
44
                              "Bio13", "Bio14", "Bio15", "Bio16",
                              "Bio17", "Bio18", "Bio19")
45
46
```

This is to rename the variables of the present period to the bioclim naming – <u>if you do it now, it helps you later when</u> <u>selecting the variables. Everything will be in proper order</u>

In the case of the future variables they are often loaded out of order,

you should check in your case!!

names(stk.fut.45) <- list.of.names

names(stk.fut.60) <- list.of.names
names(stk.fut.85) <- list.of.names</pre>

78

79

80

81

```
[1] "./Future/he26bi50/he26bi501.tif" "./Future/he26bi50/he26bi5010.tif" "./Future/he26bi50/he26bi5011.tif
                                                                                                            [4] "./Future/he26bi50/he26bi5012.tif" "./Future/he26bi50/he26bi5013.tif" "./Future/he26bi50/he26bi5014.tif
48 names(stk.fut.26)
                                                                                                                "./Future/he26bi50/he26bi5015.tif" "./Future/he26bi50/hg26bi5016.tif" "./Future/he26bi50/he26bi5017.tif
49
    names(stk.fut.45)
                                                                                                           [10] "./Future/he26bi50/he26bi5018.tif" "./Future/he26bi50//he26bi5019.tif" "./Future/he26bi50/he26bi502.tif"
[13] "./Future/he26bi50/he26bi503.tif" "./Future/he26bi504.tif" "./Future/he26bi505.tif"
   names(stk.fut.60)
50
                                                                                                                "./Future/he26bi50/he26bi506.tif" "./Future/he26bj50/he26bi507.tif" "./Future/he26bi50/he26bi508.tif"
51
   names(stk.fut.85)
                                                                                                           [19] "./Future/he26bi50/he26bi509.tif"
52
    path.fut.26
53
    #the easiest way to is just to re-load the variables again with the proper order
   path.fut.26 <- list.files("./Future/he26bi50/",pattern=".tif",full.names = T[c(1,12:19,2:11)]
54
55 path.fut.45 <- list.files("./Future/he45bi50/",pattern=".tif",full.names = T)[c(1,12:19,2:11)]</pre>
56 path.fut.60 <- list.files("./Future/he60bi50/",pattern=".tif",full.names = T)[c(1,12:19,2:11)]
                                                                                                                          Now the John Position
    path.fut.85 <- list.files("./Future/he85bi50/",pattern=".tif",full.names = T)[c(1,12:19,2:11)]
57
58
59
    stk.fut.26 <- stack(path.fut.26)</pre>
60
    stk.fut.45 <- stack(path.fut.45)</pre>
   stk.fut.60 <- stack(path.fut.60)</pre>
61
62
    stk.fut.85 <- stack(path.fut.85)</pre>
63
64
    #check if the∨ loaded fine
    names(stk.fut.26)
65
66
   names(stk.fut.45)
67
    names(stk.fut.60)
                                                                                  > path.fut.26
68
    names(stk.fut.85)
                                                                                                                           "./Future/he26bi50/he26bi502.tif" "./Future/he26bi50/he26bi503.tif"
                                                                                   [1] "./Future/he26bi50/he26bi501.tj/f"
69
                                                                                   [4] "./Future/he26bi50/he26bi504.tif"
                                                                                                                           "./Future/he26bi50/he26bi505.tif" "./Future/he26bi50/he26bi506.tif"
                                                                                   [7] "./Future/he26bi50/he26bi507.tif"
70
    #and then rename them easily
                                                                                                                           "./Future/he26bi50/he26bi508.tif" "./Future/he26bi50/he26bi509.tif"
                                                                                       "./Future/he26bi50/he26bi5010.tif" "./Future/he26bi50/he26bi5011.tif" "./Future/he26bi50/he26bi5012.tif"
71
     list.of.names <- c("Bio01","Bio02","Bio03","Bio04",
                                                                                  [10]
                                                                                  [13] "./Future/he26bi50/he26bi5013.tif" "./Future/he26bi50/he26bi5014.tif" "./Future/he26bi50/he26bi5015.tif"
72
                           "Bio05", "Bio06", "Bio07", "Bio08",
                                                                                                                           "./Future/he26bi50/he26bi5017.tif" "./Future/he26bi50/he26bi5018.tif"
                                                                                  [16]
                                                                                       "./Future/he26bi50/he26bi5016.tif"
                           "Bio09", "Bio10", "Bio11", "Bio12",
73
                                                                                  [19] "./Future/he26bi50/he26bi5019.tif
74
                           "Bio13", "Bio14", "Bio15", "Bio16",
75
                           "Bio17","Bio18","Bio19")
76
77
    names(stk.fut.26) <- list.of.names
```

> path.fut.26

When everything is in proper order, we can name it – <u>Maxent likes it</u> when variables for projections share names with the training variables

- Creating an extent object
 - We will clip to the extent of the area where we have occurrences
 - For a polygon area, the exercise is the same (ish).

• First load the occurrence data:

```
names(stk.fut.26)
82
83 # Load species occurrence file
84 # notice im using read.csv2, which expects a EU type of table. If you want to use the NA style,
85 #then you must switch read.csv2 with read.csv
86 #You can also use custom delimitrs
   sp <- read.csv2("./Occurrences/Rhinolophus_euryale_csv2.csv",header=T) #load csv of occurrence
87
88
   head(sp) #check table looks correct
89
   sp_shp <- sp #rename table</pre>
   coordinates(sp_shp) <- ~longitude+latitude #convert table to points shapefile
90
91
    proj4string(sp_shp) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")</pre>
92
93
                                                                           20
94 #Create bounding box around points
                                                                           45
    bbox <- extent(sp_shp) #create bounding box of points</pre>
95
   bbox <- bbox+2 #increase border so we do not truncate data
96
                                                                           40
97
    plot(stk.present$Bio01,ext=bbox+2)
                                                                           35
    plot(bbox, col='blue',add=T) #check if box surrounds points
98
    plot(sp_shp,add=T,pch=19,col='red') #add points
99
                                                                           30
```

60

Here i had a problem – some coordinate values

were wrong, if you have an error, eliminate those rows in Excel, save as csv, and repeat

20

40

• Clipping the rasters:

- 101 #cropping the present data
- 102 stk.present.AOI.crop <- crop(stk.present,bbox) #clip to training area
- 103 #plotting the example
- 104 par(mfrow=c(1,2)) #sets the plotting area to a 1 line 2 columns set up
- 105 plot(stk.present\$Bio01,main="Original extent")
- 106 plot(stk.present.AOI.crop \$Bio01,main="Cropped extent")
- 107 par(mfrow=c(1,1)) #sets it back to 1 image per plot

• The crop command clips all rasters

```
#now we can save them to another folder in a format
115
116
     #that maxent can read
117
     #saving the cropped present data in .asc format
118
     writeRaster(stk.present.AOI.crop,
                 "./Present_AOI/.asc",
119
120
                 overwrite=T.
121
                 bylayer=T,
122
                 suffix="names")
172
```


te PC > Windows (C:) > Practical > Present rdy Nome Data de modificação Tipo Tamanho Bio01.asc 22/11/2019 16:06 Ficheiro ASC 3 770 KB Bio02.asc 22/11/2019 16:06 Ficheiro ASC 3 769 KB Bio03.asc 22/11/2019 16:06 Ficheiro ASC 3 769 KB Bio04.asc Ficheiro ASC 22/11/2019 16:06 3 769 KB Bio05.asc 22/11/2019 16:06 Ficheiro ASC 3 750 KB

With what we have we could go to maxent, but first we need to check for autocorrelation effects in our data

- Now we repeat the same with the present data (world, cropped by future scenarios antartica is not there in the future data
 - And then you save it to the proper folder (check the script!)

```
108
109 #cropping the future data
110 stk.fut.26.AOI.crop <- crop(stk.fut.26,bbox)</pre>
111 stk.fut.45.AOI.crop <- crop(stk.fut.45,bbox)</pre>
112
     stk.fut.60.AOI.crop <- crop(stk.fut.60,bbox)</pre>
     stk.fut.85.AOI.crop <- crop(stk.fut.85,bbox)</pre>
113
114
115 #you can see the
116 par(mfrow=c(1,2))
     plot(stk.fut.26$Bio01)
117
     plot(stk.present$Bio01)
118
119
120 #cropping the present world data
     stk.present <- crop(stk.present,stk.fut.26)</pre>
121
1 - - -
```

- Remember autocorrelation and multicollinearity
- Pairwise correlation

- Model multicollinearity
 - Select n variables X1... Xn
 - Sucessively make a linear model:
 - X1 ~ X2...Xn
 - X2 ~ X1 + X3... Xn
 - IF any VIF > 10, remove said variable
 - Repeat above step with new model, excluding variable X that was removed.
 - Don't worry, R has a package for it

$$VIF_i = \frac{1}{1 - R_i^2}$$

Pairwise correlation test

• Pearson coefficient

21 ### the autocorrelation testing is important ONLY for the areas where
22 ### model is trained, so, for this section, we use only the cropped e
23

24 ### pairwise testing

2 V -

- 25 #first we convert the cropped raster to a data.frame
- 26 stk.present.AOI.crop <- na.omit(as.data.frame(stk.present.AOI.crop))</pre>
- 27 #now this stores the pearson correlation in a matrix
- 28 cor.tab <-cor(stk.present.AOI.crop)</pre>
- 29 #remember to change to write.csv if needed
- 30 write.csv2(cor.tab,"CorrelationTable_AOI.csv")

A	В	С	D	E	F	G	н	- I -	J	K	L	M	N	0	Р	Q	R	S	Т	
	Bio01	Bio02	Bio03	Bio04	Bio05	Bio06	Bio07	Bio08	Bio09	Bio10	Bio11	Bio12	Bio13	Bio14	Bio15	Bio16	Bio17	Bio18	Bio19	
Bio01	1	0,686055	0,660273	-0,23315	0,875827	0,820743	0,071517	0,025992	0,844474	0,891814	0,913634	-0,56364	-0,44576	-0,63376	0,685389	-0,45453	-0,63032	-0,68202	-0,26329	
Bio02	0,686055	1	0,659006	0,111116	0,81381	0,293616	0,509326	-0,10757	0,650355	0,730932	0,506533	-0,60923	-0,51346	-0,63433	0,645142	-0,52374	-0,644	-0,64656	-0,37722	
Bio03	0,660273	0,659006	1	-0,64641	0,409402	0,724167	-0,28811	-0,22129	0,608793	0,356148	0,803072	-0,15062	-0,07727	-0,28211	0,561358	-0,07839	-0,26755	-0,35339	0,075049	
Bio04	-0,23315	0,111116	-0,64641	1	0,243434	-0,71377	0,909285	0,18432	-0,18764	0,228713	-0,60605	-0,40359	-0,41508	-0,25636	-0,14273	-0,42122	-0,28258	-0,19758	-0,44821	
Bio05	0,875827	0,81381	0,409402	0,243434	1	0,452432	0,539321	0,068535	0,764088	0,989195	0,614411	-0,75876	-0,64563	-0,76733	0,639536	-0,65728	-0,77509	-0,78853	-0,47539	
Bio06	0,820743	0,293616	0,724167	-0,71377	0,452432	1	-0,50698	-0,05363	0,682023	0,494753	0,971028	-0,14168	-0,05604	-0,27523	0,507805	-0,05796	-0,25494	-0,34915	0,090673	
Bio07	0,071517	0,509326	-0,28811	0,909285	0,539321	-0,50698	1	0,116884	0,094506	0,488915	-0,32306	-0,59959	-0,57111	-0,48176	0,13863	-0,58056	-0,50842	-0,43246	-0,5451	
Bio08	0,025992	-0,10757	-0,22129	0,18432	0,068535	-0,05363	0,116884	1	-0,28637	0,10579	-0,06057	-0,15776	-0,19362	0,020961	-0,22475	-0,19881	0,004904	0,186607	-0,36424	
Bio09	0,844474	0,650355	0,608793	-0,18764	0,764088	0,682023	0,094506	-0,28637	1	0,76456	0,774035	-0,48841	-0,36614	-0,64124	0,672729	-0,37387	-0,62398	-0,75172	-0,12991	
Bio10	0,891814	0,730932	0,356148	0,228713	0,989195	0,494753	0,488915	0,10579	0,76456	1	0,635333	-0,74352	-0,63235	-0,75114	0,608282	-0,64363	-0,75762	-0,77618	-0,46092	
Bio11	0,913634	0,506533	0,803072	-0,60605	0,614411	0,971028	-0,32306	-0,06057	0,774035	0,635333	1	-0,28708	-0,18652	-0,41157	0,611413	-0,19089	-0,39586	-0,47981	-0,0184	
Bio12	-0,56364	-0,60923	-0,15062	-0,40359	-0,75876	-0,14168	-0,59959	-0,15776	-0,48841	-0,74352	-0,28708	1	0,941355	0,843861	-0,42529	0,95245	0,871175	0,804919	0,844799	
Bio13	-0,44576	-0,51346	-0,07727	-0,41508	-0,64563	-0,05604	-0,57111	-0,19362	-0,36614	-0,63235	-0,18652	0,941355	1	0,651168	-0,17839	0,996067	0,683382	0,667598	0,896504	
Bio14	-0,63376	-0,63433	-0,28211	-0,25636	-0,76733	-0,27523	-0,48176	0,020961	-0,64124	-0,75114	-0,41157	0,843861	0,651168	1	-0,67518	0,668518	0,992771	0,909616	0,511984	
Bio15	0,685389	0,645142	0,561358	-0,14273	0,639536	0,507805	0,13863	-0,22475	0,672729	0,608282	0,611413	-0,42529	-0,17839	-0,67518	1	-0,19707	-0,67729	-0,61078	-0,07466	
Bio16	-0,45453	-0,52374	-0,07839	-0,42122	-0,65728	-0,05796	-0,58056	-0,19881	-0,37387	-0,64363	-0,19089	0,95245	0,996067	0,668518	-0,19707	1	0,699409	0,680928	0,903838	
Bio17	-0,63032	-0,644	-0,26755	-0,28258	-0,77509	-0,25494	-0,50842	0,004904	-0,62398	-0,75762	-0,39586	0,871175	0,683382	0,992771	-0,67729	0,699409	1	0,903737	0,550295	
Bio18	-0,68202	-0,64656	-0,35339	-0,19758	-0,78853	-0,34915	-0,43246	0,186607	-0,75172	-0,77618	-0,47981	0,804919	0,667598	0,909616	-0,61078	0,680928	0,903737	1	0,399641	
Bio19	-0,26329	-0,37722	0,075049	-0,44821	-0,47539	0,090673	-0,5451	-0,36424	-0,12991	-0,46092	-0,0184	0,844799	0,896504	0,511984	-0,07466	0,903838	0,550295	0,399641	1	

- Think of which variables are good for your species
- Confirm if there is more than 0.7 and smaller than -.07 pairwise correlation between them
- To many pairwise correlations will cause multicollinearity

	Var 1	Var 2	Va3
Var 1	Var 1 ~ var 1		
Var 2	Var2 ~var 1	Var 2 ~ var 2	
Var3	Var 3 ~ Var 1	Var 3 ~ var 2	

• For exemple, my first selection:

• Now I need to test for multicollinearity:

	Bio01	Bio04	Bio07	Bio12	Bio15	Bio19
Bio01	1	-0,23315	0,071517	-0,56364	0,685389	-0,26329
Bio04	-0,23315	1	0,909285	-0,40359	-0,14273	-0,44821
Bio07	0,071517	0,909285	1	-0,59959	0,13863	-0,5451
Bio12	-0,56364	-0,40359	-0,59959	1	-0,42529	0,844799
Bio15	0,685389	-0,14273	0,13863	-0,42529	1	-0,07466
Bio19	-0,26329	-0,44821	-0,5451	0,844799	-0,07466	1

#multicollinearity testing library(usdm) #e.g. i select Bio01; Bio04; Bio07; Bio 12; Bio 15 and bio 19 head(df.crop.stack) df.crop.stack.selection <- df.crop.stack[,c(1,4,7,12,15,19)] #select only the variables i am interested head(df.crop.stack.selection)

vif(df.crop.stack.selection, maxobservations=nrow(df.crop.stack.selection))

- Bio 04 and 07 are so strongly correlated that they affect the entire model I have to remove one
 - Bio 04: Temp. seasonality
 - Bio 07: Temp. anual range
 - I like seasonality more for Mediterranean climates

	Va	riables	VIF				
1		Bio01	3.623841				
2		Bio04	13.534628				
3		Bio07	13.308972				
4		Bio12	9.459776				
5		Bio15	2.617598				
6		Bio19	5.691570				

	Var	iables	VIF
1		B1001	3.285936
2		Bio04	1.934874
3		Bio12	9.448515
4		Bio15	2.331450
5		Bio19	5.659382

Last step before modelling

• Now we have:

- Selected the occurrence data we want to use
- Selected the variables we want to use and cropped them to our choosen study area
- What's missing?
 - Crop the future scenario data and export it to a folder

#Saving the cropped variables to the correct folder, in the .asc format

#we had already saved the cropped rast path2rst.HadGEM2ES_RCP85 <- list.files("./Future/", full.names = T) path2rst.HadGEM2ES_RCP85 #in this case the order of variables is changed, its better to keep everything in the #same order. It's easy to adapt the code to read in our preferred order #WARNING: this step might be different in your case, CHECK IT FIRST rst.fut.stack.crop <- crop(rst.fut.stack,bbox) names(rst.fut.stack.crop)

#now we can jus save the variables to a new folder #but first, we rename the variables to the same as the present vars names(rst.fut.stack.crop)<- names(rst.AOI.crop)</pre>

Think:

- If you train and project the model in one AOI you can't find new areas around the world where the species might be
- If you crop your future data, you will also not be able to predict anything regarding the world

Maxent finally

Load the occurrences (beware of the type of CSV)

t tir	hallv		Load the enviromental variables – point						
	iany		to the folder						
	🙆 Maximum Entropy Species Distribution Modeling, Versio	on 3.4.1		×					
	Samples	Environr	nental layers						
	File rrences\Rhinolophus_euryale_csv1.c Browse	Directory/File C:\Practical\Presen	t_AOI Browse	9					
		Bio09	Continuous						
		BI010	Continuous		De-select all and then select				
		Bio12	Continuous		vour variables				
		Bio13	Continuous		your variables				
		Bio14	Continuous 🗸						
	Rhinolophus_euryale	✓ _Bio15	Continuous 🗸						
5V)			Continuous 💌	=					
		Bio17	Continuous 🗸]					
		Bio18	Continuous 💌						
		✓ _Bio19	Continuous	-					
		Select all	Deselect all		Activate overything and				
	✓ Linear features		Create response curves						
	V Quadratic features		Make pictures of predictions		choose logistic output				
	Product features	Do jackknife	to measure variable importance [0				
	Threshold features		Output format Logistic	-					
			Output file type asc	•					
	Output dire	ectory C:\Practical\Maxent\Results_v1	4 Browse	•					
	Projection	layers directory/file D:\Practical\Future	e_VVLD\he45bi50_VVLD Browse	•					
	Run	Settings	Help						
			Droce cottings	for out	ra antiona				
			riess settings	s ior ext	ra options				

Take note of the warnings you will get and let me know what you think they are x)

Maxent finally

